Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

Related tags

Deep Learningcogail
Overview

CoGAIL

Table of Content

Overview

This repository is the implementation code of the paper "Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration"(arXiv, Project, Video) by Wang et al. at Stanford Vision and Learning Lab. In this repo, we provide our full implementation code of training and evaluation.

Installation

  • python 3.6+
conda create -n cogail python=3.6
conda activate cogail
  • iGibson 1.0 variant version for co-gail. For more details of iGibson installation please refer to Link
git clone https://github.com/j96w/iGibson.git --recursive
cd iGibson
git checkout cogail
python -m pip install -e .

Please also download the assets of iGibson (models of the objects, 3D scenes, etc.) follow the instruction. The data should be located at your_installation_path/igibson/data/. After downloaded the dataset, copy the modified robot and humanoid mesh file to this location as follows

cd urdfs
cp fetch.urdf your_installation_path/igibson/data/assets/models/fetch/.
cp camera.urdf your_installation_path/igibson/data/assets/models/grippers/basic_gripper/.
cp -r humanoid_hri your_installation_path/igibson/data/assets/models/.
  • other requirements
cd cogail
python -m pip install -r requirements.txt

Dataset

You can download the collected human-human collaboration demonstrations for Link. The demos for cogail_exp1_2dfq is collected by a pair of joysticks on an xbox controller. The demos for cogail_exp2_handover and cogail_exp3_seqmanip are collected with two phones on the teleoperation system RoboTurk. After downloaded the file, simply unzip them at cogail/ as follows

unzip dataset.zip
mv dataset your_installation_path/cogail/dataset

Training

There are three environments (cogail_exp1_2dfq, cogail_exp2_handover, cogail_exp3_seqmanip) implemented in this work. Please specify the choice of environment with --env-name

python scripts/train.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Evaluation

Evaluation on unseen human demos (replay evaluation):

python scripts/eval_replay.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Trained Checkpoints

You can download the trained checkpoints for all three environments from Link.

Acknowledgement

The cogail_exp1_2dfq is implemented with Pygame. The cogail_exp2_handover and cogail_exp3_seqmanip are implemented in iGibson v1.0.

The demos for robot manipulation in iGibson is collected with RoboTurk.

Code is based on the PyTorch GAIL implementation by ikostrikov (https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.git).

Citations

Please cite Co-GAIL if you use this repository in your publications:

@article{wang2021co,
  title={Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration},
  author={Wang, Chen and P{\'e}rez-D'Arpino, Claudia and Xu, Danfei and Fei-Fei, Li and Liu, C Karen and Savarese, Silvio},
  journal={arXiv preprint arXiv:2108.06038},
  year={2021}
}

License

Licensed under the MIT License

Owner
Jeremy Wang
Ph.D. student, Stanford
Jeremy Wang
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin KerÅ¡ner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022