Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

Overview

DOI Build Status

pytorch-3dunet

PyTorch implementation 3D U-Net and its variants:

The code allows for training the U-Net for both: semantic segmentation (binary and multi-class) and regression problems (e.g. de-noising, learning deconvolutions).

2D U-Net

Training the standard 2D U-Net is also possible, see 2DUnet_dsb2018 for example configuration. Just make sure to keep the singleton z-dimension in your H5 dataset (i.e. (1, Y, X) instead of (Y, X)) , because data loading / data augmentation requires tensors of rank 3 always.

Prerequisites

  • Linux
  • NVIDIA GPU
  • CUDA CuDNN

Running on Windows

The package has not been tested on Windows, however some reported using it on Windows. One thing to keep in mind: when training with CrossEntropyLoss: the label type in the config file should be change from long to int64, otherwise there will be an error: RuntimeError: Expected object of scalar type Long but got scalar type Int for argument #2 'target'.

Supported Loss Functions

Semantic Segmentation

  • BCEWithLogitsLoss (binary cross-entropy)
  • DiceLoss (standard DiceLoss defined as 1 - DiceCoefficient used for binary semantic segmentation; when more than 2 classes are present in the ground truth, it computes the DiceLoss per channel and averages the values).
  • BCEDiceLoss (Linear combination of BCE and Dice losses, i.e. alpha * BCE + beta * Dice, alpha, beta can be specified in the loss section of the config)
  • CrossEntropyLoss (one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config)
  • PixelWiseCrossEntropyLoss (one can specify not only class weights but also per pixel weights in order to give more gradient to important (or under-represented) regions in the ground truth)
  • WeightedCrossEntropyLoss (see 'Weighted cross-entropy (WCE)' in the below paper for a detailed explanation; one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config)
  • GeneralizedDiceLoss (see 'Generalized Dice Loss (GDL)' in the below paper for a detailed explanation; one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config). Note: use this loss function only if the labels in the training dataset are very imbalanced e.g. one class having at least 3 orders of magnitude more voxels than the others. Otherwise use standard DiceLoss.

For a detailed explanation of some of the supported loss functions see: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, M. Jorge Cardoso

IMPORTANT: if one wants to use their own loss function, bear in mind that the current model implementation always output logits and it's up to the implementation of the loss to normalize it correctly, e.g. by applying Sigmoid or Softmax.

Regression

  • MSELoss
  • L1Loss
  • SmoothL1Loss
  • WeightedSmoothL1Loss - extension of the SmoothL1Loss which allows to weight the voxel values above (below) a given threshold differently

Supported Evaluation Metrics

Semantic Segmentation

  • MeanIoU - Mean intersection over union
  • DiceCoefficient - Dice Coefficient (computes per channel Dice Coefficient and returns the average) If a 3D U-Net was trained to predict cell boundaries, one can use the following semantic instance segmentation metrics (the metrics below are computed by running connected components on thresholded boundary map and comparing the resulted instances to the ground truth instance segmentation):
  • BoundaryAveragePrecision - Average Precision applied to the boundary probability maps: thresholds the boundary maps given by the network, runs connected components to get the segmentation and computes AP between the resulting segmentation and the ground truth
  • AdaptedRandError - Adapted Rand Error (see http://brainiac2.mit.edu/SNEMI3D/evaluation for a detailed explanation)
  • AveragePrecision - see https://www.kaggle.com/stkbailey/step-by-step-explanation-of-scoring-metric

If not specified MeanIoU will be used by default.

Regression

  • PSNR - peak signal to noise ratio

Installation

  • The easiest way to install pytorch-3dunet package is via conda:
conda create -n 3dunet -c conda-forge -c awolny pytorch-3dunet
conda activate 3dunet

After installation the following commands are accessible within the conda environment: train3dunet for training the network and predict3dunet for prediction (see below).

  • One can also install directly from source:
python setup.py install

Installation tips

Make sure that the installed pytorch is compatible with your CUDA version, otherwise the training/prediction will fail to run on GPU. You can re-install pytorch compatible with your CUDA in the 3dunet env by:

conda install -c pytorch torchvision cudatoolkit=<YOU_CUDA_VERSION> pytorch

Train

Given that pytorch-3dunet package was installed via conda as described above, one can train the network by simply invoking:

train3dunet --config <CONFIG>

where CONFIG is the path to a YAML configuration file, which specifies all aspects of the training procedure.

In order to train on your own data just provide the paths to your HDF5 training and validation datasets in the config.

The HDF5 files should contain the raw/label data sets in the following axis order: DHW (in case of 3D) CDHW (in case of 4D).

One can monitor the training progress with Tensorboard tensorboard --logdir <checkpoint_dir>/logs/ (you need tensorflow installed in your conda env), where checkpoint_dir is the path to the checkpoint directory specified in the config.

Training tips

  1. When training with binary-based losses, i.e.: BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss: The target data has to be 4D (one target binary mask per channel). If you have a 3D binary data (foreground/background), you can just change ToTensor transform for the label to contain expand_dims: true, see e.g. train_config_dice.yaml. When training with WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss the target dataset has to be 3D, see also pytorch documentation for CE loss: https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
  2. final_sigmoid in the model config section applies only to the inference time: When training with cross entropy based losses (WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss) set final_sigmoid=False so that Softmax normalization is applied to the output. When training with BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss set final_sigmoid=True

Prediction

Given that pytorch-3dunet package was installed via conda as described above, one can run the prediction via:

predict3dunet --config <CONFIG>

In order to predict on your own data, just provide the path to your model as well as paths to HDF5 test files (see test_config_dice.yaml).

Prediction tips

In order to avoid checkerboard artifacts in the output prediction masks the patch predictions are averaged, so make sure that patch/stride params lead to overlapping blocks, e.g. patch: [64 128 128] stride: [32 96 96] will give you a 'halo' of 32 voxels in each direction.

Data Parallelism

By default, if multiple GPUs are available training/prediction will be run on all the GPUs using DataParallel. If training/prediction on all available GPUs is not desirable, restrict the number of GPUs using CUDA_VISIBLE_DEVICES, e.g.

CUDA_VISIBLE_DEVICES=0,1 train3dunet --config <CONFIG>

or

CUDA_VISIBLE_DEVICES=0,1 predict3dunet --config <CONFIG>

Examples

Cell boundary predictions for lightsheet images of Arabidopsis thaliana lateral root

The data can be downloaded from the following OSF project:

Training and inference configs can be found in 3DUnet_lightsheet_boundary.

Sample z-slice predictions on the test set (top: raw input , bottom: boundary predictions):

Cell boundary predictions for confocal images of Arabidopsis thaliana ovules

The data can be downloaded from the following OSF project:

Training and inference configs can be found in 3DUnet_confocal_boundary.

Sample z-slice predictions on the test set (top: raw input , bottom: boundary predictions):

Nuclei predictions for lightsheet images of Arabidopsis thaliana lateral root

The training and validation sets can be downloaded from the following OSF project: https://osf.io/thxzn/

Training and inference configs can be found in 3DUnet_lightsheet_nuclei.

Sample z-slice predictions on the test set (top: raw input, bottom: nuclei predictions):

2D nuclei predictions for Kaggle DSB2018

The data can be downloaded from: https://www.kaggle.com/c/data-science-bowl-2018/data

Training and inference configs can be found in 2DUnet_dsb2018.

Sample predictions on the test image (top: raw input, bottom: nuclei predictions):

Contribute

If you want to contribute back, please make a pull request.

Cite

If you use this code for your research, please cite as:

@article {10.7554/eLife.57613,
article_type = {journal},
title = {Accurate and versatile 3D segmentation of plant tissues at cellular resolution},
author = {Wolny, Adrian and Cerrone, Lorenzo and Vijayan, Athul and Tofanelli, Rachele and Barro, Amaya Vilches and Louveaux, Marion and Wenzl, Christian and Strauss, Sören and Wilson-Sánchez, David and Lymbouridou, Rena and Steigleder, Susanne S and Pape, Constantin and Bailoni, Alberto and Duran-Nebreda, Salva and Bassel, George W and Lohmann, Jan U and Tsiantis, Miltos and Hamprecht, Fred A and Schneitz, Kay and Maizel, Alexis and Kreshuk, Anna},
editor = {Hardtke, Christian S and Bergmann, Dominique C and Bergmann, Dominique C and Graeff, Moritz},
volume = 9,
year = 2020,
month = {jul},
pub_date = {2020-07-29},
pages = {e57613},
citation = {eLife 2020;9:e57613},
doi = {10.7554/eLife.57613},
url = {https://doi.org/10.7554/eLife.57613},
abstract = {Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural network to predict cell boundaries and graph partitioning to segment cells based on the neural network predictions. PlantSeg was trained on fixed and live plant organs imaged with confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes well across different tissues, scales, acquisition settings even on non plant samples. We present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free and open-source, with both a command line and a user-friendly graphical interface.},
keywords = {instance segmentation, cell segmentation, deep learning, image analysis},
journal = {eLife},
issn = {2050-084X},
publisher = {eLife Sciences Publications, Ltd},
}
Comments
  • fix weights unsqueeze in PixelWiseCrossEntropy

    fix weights unsqueeze in PixelWiseCrossEntropy

    First off, thanks for the great library, @wolny ! It has really accelerated my work being able to start with a nice implementation of 3D unets.

    I think there might be a small bug in the PixelWiseCrossEntropy loss. It seems that the weights get passed in as a NxDxHxW tensor and in the "expand weights" code block they should be expanded to NxCxDxHxW tensor to match the target (which has been converted to a one hot encoding). Thus, I think the unsqueeze should be applied to axis 1, not axis 0. In this case the weights would become Nx1xDxHxW, then NxCxDxHxW in the subsequent weights.expand_as(input).

    Without this change, I get the following error when I train with batch size > 1.

    2021-03-12 17:05:50,156 [MainThread] INFO UNet3DTrainer - Training iteration [1/100000]. Epoch [0/99]
    Traceback (most recent call last):
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/train.py", line 33, in <module>
        main()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/train.py", line 29, in main
        trainer.fit()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 246, in fit
        should_terminate = self.train()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 273, in train
        output, loss = self._forward_pass(input, target, weight)
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 408, in _forward_pass
        loss = self.loss_criterion(output, target, weight)
      File "/cluster/apps/nss/gcc-6.3.0/python_gpu/3.8.5/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/losses.py", line 220, in forward
        weights = weights.expand_as(input)
    RuntimeError: The expanded size of the tensor (3) must match the existing size (12) at non-singleton dimension 1.  Target sizes: [12, 3, 70, 70, 70].  Tensor sizes: [1, 12, 70, 70, 70]
    

    Does this change seem right?

    opened by kevinyamauchi 2
  • Update environment.yaml

    Update environment.yaml

    pytorch channel should have higher priority than conda-forge, otherwise the pytorch installation from conda-forge will be used. (And this causes issues with gpu installations)

    opened by constantinpape 1
  • Create command-lines (i.e. console_scripts) when installing from source

    Create command-lines (i.e. console_scripts) when installing from source

    Hi,

    I know that the command lines are installed into the conda environment.

    This code adds commands when installing from source (i.e. python setup.py install). I needed to do this as I ultimately want to call pytorch-3dunet within mpi2/LAMA and don't want to use the conda env due to install issues etc.

    Feel free to merge if it doesn't cause conflicts.

    Kind Regards, Kyle Drover

    opened by dorkylever 1
  • Read data path config as a directory

    Read data path config as a directory

    There may be many hdf5 data files, and it is common putting all data files in a directory. Specify all paths in the config file is somewhat inconvenient and makes the config unreadable.

    opened by songxiaocheng 1
  • Add Squeeze and Excitation and UNETR as an option

    Add Squeeze and Excitation and UNETR as an option

    Squeeze and Excitation UNet and UNETR can be selected as an option to train in config.yml.

    Example (UNETR):

    # use a fixed random seed to guarantee that when you run the code twice you will get the same outcome
    manual_seed: 0
    model:
      name: UNETR
      # number of input channels to the model
      in_channels: 1
      ...
    

    Example (SE UNet):

    # use a fixed random seed to guarantee that when you run the code twice you will get the same outcome
    manual_seed: 0
    model:
      name: ResidualUNetSE3D
      # number of input channels to the model
      in_channels: 1
      ...
    

    Credits for UNETR code.

    opened by imadtoubal 0
Owner
Adrian Wolny
PhD student in Machine Learning @HCIHeidelberg
Adrian Wolny
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022