Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview

Overview

This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and handcrafted features as inputs,to balance the trade-off between performance and model complexity. The paper can be checked here.

The model performance is tested on the ASVSpoof 2019 Dataset.

Overview

Setup

Environment

Show details

  • speechbrain==0.5.7
  • pandas
  • torch==1.9.1
  • torchaudio==0.9.1
  • nnAudio==0.2.6
  • ptflops==0.6.6

  • Create a conda environment with conda env create -f environment.yml.
  • Activate the conda environment with conda activate .

``

Data preprocessing

.
├── data                       
│   │
│   ├── PA                  
│   │   └── ...
│   └── LA           
│       ├── ASVspoof2019_LA_asv_protocols
│       ├── ASVspoof2019_LA_asv_scores
│       ├── ASVspoof2019_LA_cm_protocols
│       ├── ASVspoof2019_LA_train
│       ├── ASVspoof2019_LA_dev
│       
│
└── ARawNet
  1. Download dataset. Our experiment is trained on the Logical access (LA) scenario of the ASVspoof 2019 dataset. Dataset can be downloaded here.

  2. Unzip and save the data to a folder data in the same directory as ARawNet as shown in below.

  3. Run python preprocess.py Or you can use our processed data directly under "/processed_data".

Train

python train_raw_net.py yaml/RawSNet.yaml --data_parallel_backend -data_parallel_count=2

Evaluate

python eval.py

Check Model Size and multiply-and-accumulates (MACs)

python check_model_size.py yaml/RawSNet.yaml

Model Performance

Accuracy metric

min t−DCF =min{βPcm (s)+Pcm(s)}

Explanations can be found here: t-DCF

Experiment Results

Front-end Main Encoder E_A EER min-tDCF
Res2Net Spec Res2Net - 8.783 0.2237
LFCC - 2.869 0.0786
CQT - 2.502 0.0743
Rawnet2 Raw waveforms Rawnet2 - 5.13 0.1175
ARawNet Mel-Spectrogram XVector 1.32 0.03894
- 2.39320 0.06875
ARawNet Mel-Spectrogram ECAPA-TDNN 1.39 0.04316
- 2.11 0.06425
ARawNet CQT XVector 1.74 0.05194
- 3.39875 0.09510
ARawNet CQT ECAPA-TDNN 1.11 0.03645
- 1.72667 0.05077
Main Encoder Auxiliary Encoder Parameters MACs
Rawnet2 - 25.43 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector 5.81 M 2.71 GMac
XVector - 4.66M 1.88 GMac
ECAPA-TDNN 7.18 M 3.19 GMac
ECAPA-TDNN - 6.03M 2.36 GMac

Cite Our Paper

If you use this repository, please consider citing:

@inproceedings{Teng2021ComplementingHF, title={Complementing Handcrafted Features with Raw Waveform Using a Light-weight Auxiliary Model}, author={Zhongwei Teng and Quchen Fu and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

@inproceedings{Fu2021FastAudioAL, title={FastAudio: A Learnable Audio Front-End for Spoof Speech Detection}, author={Quchen Fu and Zhongwei Teng and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022