Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview

Overview

This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and handcrafted features as inputs,to balance the trade-off between performance and model complexity. The paper can be checked here.

The model performance is tested on the ASVSpoof 2019 Dataset.

Overview

Setup

Environment

Show details

  • speechbrain==0.5.7
  • pandas
  • torch==1.9.1
  • torchaudio==0.9.1
  • nnAudio==0.2.6
  • ptflops==0.6.6

  • Create a conda environment with conda env create -f environment.yml.
  • Activate the conda environment with conda activate .

``

Data preprocessing

.
├── data                       
│   │
│   ├── PA                  
│   │   └── ...
│   └── LA           
│       ├── ASVspoof2019_LA_asv_protocols
│       ├── ASVspoof2019_LA_asv_scores
│       ├── ASVspoof2019_LA_cm_protocols
│       ├── ASVspoof2019_LA_train
│       ├── ASVspoof2019_LA_dev
│       
│
└── ARawNet
  1. Download dataset. Our experiment is trained on the Logical access (LA) scenario of the ASVspoof 2019 dataset. Dataset can be downloaded here.

  2. Unzip and save the data to a folder data in the same directory as ARawNet as shown in below.

  3. Run python preprocess.py Or you can use our processed data directly under "/processed_data".

Train

python train_raw_net.py yaml/RawSNet.yaml --data_parallel_backend -data_parallel_count=2

Evaluate

python eval.py

Check Model Size and multiply-and-accumulates (MACs)

python check_model_size.py yaml/RawSNet.yaml

Model Performance

Accuracy metric

min t−DCF =min{βPcm (s)+Pcm(s)}

Explanations can be found here: t-DCF

Experiment Results

Front-end Main Encoder E_A EER min-tDCF
Res2Net Spec Res2Net - 8.783 0.2237
LFCC - 2.869 0.0786
CQT - 2.502 0.0743
Rawnet2 Raw waveforms Rawnet2 - 5.13 0.1175
ARawNet Mel-Spectrogram XVector 1.32 0.03894
- 2.39320 0.06875
ARawNet Mel-Spectrogram ECAPA-TDNN 1.39 0.04316
- 2.11 0.06425
ARawNet CQT XVector 1.74 0.05194
- 3.39875 0.09510
ARawNet CQT ECAPA-TDNN 1.11 0.03645
- 1.72667 0.05077
Main Encoder Auxiliary Encoder Parameters MACs
Rawnet2 - 25.43 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector 5.81 M 2.71 GMac
XVector - 4.66M 1.88 GMac
ECAPA-TDNN 7.18 M 3.19 GMac
ECAPA-TDNN - 6.03M 2.36 GMac

Cite Our Paper

If you use this repository, please consider citing:

@inproceedings{Teng2021ComplementingHF, title={Complementing Handcrafted Features with Raw Waveform Using a Light-weight Auxiliary Model}, author={Zhongwei Teng and Quchen Fu and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

@inproceedings{Fu2021FastAudioAL, title={FastAudio: A Learnable Audio Front-End for Spoof Speech Detection}, author={Quchen Fu and Zhongwei Teng and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022