Code for intrusion detection system (IDS) development using CNN models and transfer learning

Overview

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning

This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrusion Detection System for Internet of Vehicles" accepted in IEEE International Conference on Communications (IEEE ICC).

  • Authors: Li Yang and Abdallah Shami
  • Organization: The Optimized Computing and Communications (OC2) Lab, ECE Department, Western University

This repository introduces how to use convolutional neural networks (CNNs) and transfer learning techniques to develop intrusion detection systems. Ensemble learning and hyperparameter optimization techniques are also used to achieve optimized model performance.

Abstract of The Paper

Modern vehicles, including autonomous vehicles and connected vehicles, are increasingly connected to the external world, which enables various functionalities and services. However, the improving connectivity also increases the attack surfaces of the Internet of Vehicles (IoV), causing its vulnerabilities to cyber-threats. Due to the lack of authentication and encryption procedures in vehicular networks, Intrusion Detection Systems (IDSs) are essential approaches to protect modern vehicle systems from network attacks. In this paper, a transfer learning and ensemble learning-based IDS is proposed for IoV systems using convolutional neural networks (CNNs) and hyper-parameter optimization techniques. In the experiments, the proposed IDS has demonstrated over 99.25% detection rates and F1-scores on two well-known public benchmark IoV security datasets: the Car-Hacking dataset and the CICIDS2017 dataset. This shows the effectiveness of the proposed IDS for cyber-attack detection in both intra-vehicle and external vehicular networks.

Implementation

CNN Models

  • VGG16
  • VGG19
  • Xception
  • Inception
  • Resnet
  • InceptionResnet

Ensemble Learning Models

  • Bagging
  • Probability Averaging
  • Concatenation

Hyperparameter Optimization Methods

  • Random Search (RS)
  • Bayesian Optimization - Tree Parzen Estimator(BO-TPE)

Dataset

  1. CAN-intrusion/Car-Hacking dataset, a benchmark network security dataset for intra-vehicle intrusion detection
  1. CICIDS2017 dataset, a popular network traffic dataset for intrusion detection problems

For the purpose of displaying the experimental results in Jupyter Notebook, the sampled subset of the CAN-intrusion dataset is used in the sample code. The subsets are in the "data" folder.

Code

Libraries

Contact-Info

Please feel free to contact us for any questions or cooperation opportunities. We will be happy to help.

Citation

If you find this repository useful in your research, please cite this article as:

L. Yang and A. Shami, "A Transfer Learning and Optimized CNN Based Intrusion Detection System for Internet of Vehicles," in 2022 IEEE International Conference on Communications (ICC), Seoul, South Korea, 2022, pp. 1-6.

@INPROCEEDINGS{
  author={Yang, Li and Shami, Abdallah},
  booktitle={2022 IEEE International Conference on Communications (ICC)}, 
  title={A Transfer Learning and Optimized CNN Based Intrusion Detection System for Internet of Vehicles,}, 
  year={2022},
  pages={1-6},
  doi={}
  }
Owner
Western OC2 Lab
The Optimized Computing and Communications (OC2) Laboratory within the Department of Electrical and Computer Engineering at Western University, London, Canada.
Western OC2 Lab
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022