Official code for paper Exemplar Based 3D Portrait Stylization.

Overview

3D-Portrait-Stylization

This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project website.

The entire framework consists of four parts, landmark translation, face reconstruction, face deformation, and texture stylization. Codes (or programs) for the last three parts are ready now, and the first part is still under preparation.

Landmark Translation

Code under preparation. Dataset can be downloaded here.

Face Reconstruction and Deformation

Environment

These two parts require Windows with GPU. They also require a simple Python environment with opencv, imageio and numpy for automatic batch file generation and execution. Python code in the two parts is tested using Pycharm, instead of command lines.

Please download the regressor_large.bin and tensorMale.bin and put them in ./face_recon_deform/PhotoAvatarLib_exe/Data/.

Inputs

These two parts require inputs in the format given below.

Path Description
dirname_data Directory of all inputs
  └  XXX Directory of one input pair
    ├  XXX.jpg Content image
    ├  XXX.txt Landmarks of the content image
    ├  XXX_style.jpg Style image
    ├  XXX_style.txt Landmarks of the style image
    ├  XXX_translated.txt Translated landmarks
  └  YYY Directory of one input pair
    ├  ... ...

Some examples are given in ./data_demo/. As the code for translation has not been provided, you may use The Face of Art to obtain some results for now.

Uasge

Directly run main_recon_deform.py is OK, and you can also check the usage from the code.

In ./face_recon_deform/PhotoAvatarLib_exe/ is a compiled reconstruction program which takes one single image as input, automatically detects the landmarks and fits a 3DMM model towards the detected landmarks. The source code can be downloaded here.

In ./face_recon_deform/LaplacianDeformerConsole/ is a compiled deformation program which deforms a 3D mesh towards a set of 2D/3D landmark targets. You can find the explanation of the parameters by runing LaplacianDeformerConsole.exe without adding options. Please note that it only supports one mesh topology and cannot be used for deforming random meshes. The source code is not able to provide, and some other Laplacian or Laplacian-like deformations can be found in SoftRas and libigl.

Outputs

Please refer to ./face_recon_deform/readme_output.md

Texture Stylization

Environment

The environment for this part is built with CUDA 10.0, python 3.7, and PyTorch 1.2.0, using Conda. Create environment by:

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
conda install scikit-image tqdm opencv

The code uses neural-renderer, which is already compiled. However, if anything go wrong (perhaps because of the environment difference), you can re-compile it by

python setup.py install
mv build/lib.linux-x86_64-3.7-or-something-similar/neural_renderer/cuda/*.so neural_renderer/cuda/

Please download vgg19_conv.pth and put it in ./texture_style_transfer/transfer/models/.

Inputs

You can directly use the outputs (and inputs) from the previous parts.

Usage

cd texture_style_transfer
python transfer/main_texture_transfer.py -dd ../data_demo_or_your_data_dir

Acknowledgements

This code is built based heavliy on Neural 3D Mesh Renderer and STROTSS.

Citation

@ARTICLE{han2021exemplarbased,
author={Han, Fangzhou and Ye, Shuquan and He, Mingming and Chai, Menglei and Liao, Jing},  
journal={IEEE Transactions on Visualization and Computer Graphics},   
title={Exemplar-Based 3D Portrait Stylization},   
year={2021},  
doi={10.1109/TVCG.2021.3114308}}
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022