Official code for paper Exemplar Based 3D Portrait Stylization.

Overview

3D-Portrait-Stylization

This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project website.

The entire framework consists of four parts, landmark translation, face reconstruction, face deformation, and texture stylization. Codes (or programs) for the last three parts are ready now, and the first part is still under preparation.

Landmark Translation

Code under preparation. Dataset can be downloaded here.

Face Reconstruction and Deformation

Environment

These two parts require Windows with GPU. They also require a simple Python environment with opencv, imageio and numpy for automatic batch file generation and execution. Python code in the two parts is tested using Pycharm, instead of command lines.

Please download the regressor_large.bin and tensorMale.bin and put them in ./face_recon_deform/PhotoAvatarLib_exe/Data/.

Inputs

These two parts require inputs in the format given below.

Path Description
dirname_data Directory of all inputs
  └  XXX Directory of one input pair
    ├  XXX.jpg Content image
    ├  XXX.txt Landmarks of the content image
    ├  XXX_style.jpg Style image
    ├  XXX_style.txt Landmarks of the style image
    ├  XXX_translated.txt Translated landmarks
  └  YYY Directory of one input pair
    ├  ... ...

Some examples are given in ./data_demo/. As the code for translation has not been provided, you may use The Face of Art to obtain some results for now.

Uasge

Directly run main_recon_deform.py is OK, and you can also check the usage from the code.

In ./face_recon_deform/PhotoAvatarLib_exe/ is a compiled reconstruction program which takes one single image as input, automatically detects the landmarks and fits a 3DMM model towards the detected landmarks. The source code can be downloaded here.

In ./face_recon_deform/LaplacianDeformerConsole/ is a compiled deformation program which deforms a 3D mesh towards a set of 2D/3D landmark targets. You can find the explanation of the parameters by runing LaplacianDeformerConsole.exe without adding options. Please note that it only supports one mesh topology and cannot be used for deforming random meshes. The source code is not able to provide, and some other Laplacian or Laplacian-like deformations can be found in SoftRas and libigl.

Outputs

Please refer to ./face_recon_deform/readme_output.md

Texture Stylization

Environment

The environment for this part is built with CUDA 10.0, python 3.7, and PyTorch 1.2.0, using Conda. Create environment by:

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
conda install scikit-image tqdm opencv

The code uses neural-renderer, which is already compiled. However, if anything go wrong (perhaps because of the environment difference), you can re-compile it by

python setup.py install
mv build/lib.linux-x86_64-3.7-or-something-similar/neural_renderer/cuda/*.so neural_renderer/cuda/

Please download vgg19_conv.pth and put it in ./texture_style_transfer/transfer/models/.

Inputs

You can directly use the outputs (and inputs) from the previous parts.

Usage

cd texture_style_transfer
python transfer/main_texture_transfer.py -dd ../data_demo_or_your_data_dir

Acknowledgements

This code is built based heavliy on Neural 3D Mesh Renderer and STROTSS.

Citation

@ARTICLE{han2021exemplarbased,
author={Han, Fangzhou and Ye, Shuquan and He, Mingming and Chai, Menglei and Liao, Jing},  
journal={IEEE Transactions on Visualization and Computer Graphics},   
title={Exemplar-Based 3D Portrait Stylization},   
year={2021},  
doi={10.1109/TVCG.2021.3114308}}
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022