Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Overview

Music Trees

Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

train-test splits and hierarchies.

  • For all experiments, we used the instrument-based split in /music_trees/assets/partitions/mdb-aug.json.
  • To view our Hornbostel-Sachs class hierarchy, see /music_trees/assets/taxonomies/deeper-mdb.yaml. Note that not all of the instruments on this taxonomy are used in our experiments.
  • All random taxonomies are in /music_trees/assets/taxonomies/scrambled-*.yaml

Installation

first, clone the medleydb repo and install using pip install -e:

  • medleydb from marl

Now, download the medleydb and mdb 2.0 datasets from zenodo.

install some utilities for visualizing the embedding space:

git clone https://github.com/hugofloresgarcia/embviz.git
cd embviz
pip install -e .

then, clone this repo and install with

pip install -e .

Usage

1. Generate data

Make sure the MEDLEYDB_PATH environment variable is set (see the medleydb repo for more instructions ). Then, run the generation script:

python -m music_trees.generate \
                --dataset mdb \
                --name mdb-aug \
                --example_length 1.0 \
                --augment true \
                --hop_length 0.5 \
                --sample_rate 16000 \

This will generate both augmented and unaugmented data for MedleyDB. NOTE: There was a bug in the code that disabled data augmentation silently. This bug has been left in the code for the sake of reproducibility. This is why we don't report any data augmentation in the paper, as none was applied at the time of experiments.

2. Partition data

The partition file used for all experiments is available at /music_trees/assets/partitions/mdb-aug.json.

3. Run experiments

The search script will train all models for a particular experiment. It will grab as many GPUs are available (use CUDA_VISIBLE_DEVICES to change the availability of GPUs) and train as many models as it can in parallel.

Each model will be stored under /runs/<NAME>/<VERSION>.

Arbitrary Hierarchies

python music_trees/search.py --name scrambled-tax

Height Search (note that height=0 and height=1 are the baseline and proposed model, respectively)

python music_trees/search.py --name height-v1

Loss Ablation

python music_trees/search.py --name loss-alpha

train the additional BCE baseline:

python music_trees/train.py --model_name hprotonet --height 4 --d_root 128 --loss_alpha 1 --name "flat (BCE)" --dataset mdb-aug --learning_rate 0.03 --loss_weight_fn cross-entropy

4. Evaluate

Perform evaluation on a model. Make sure to pass the path to the run that you wish to evaluate.

To evaluate a model:

python music_trees/eval.py --exp_dir <PATH_TO_RUN>/<VERSION>

Each model will store its evaluation results under /results/<NAME>/<VERSION>

5. Analyze

To compare models and generate analysis figures and tables, place of all the results folders you would like to analyze under a single folder. The resulting folder should look like this:

my_experiment/trial1/version_0
my_experiment/trial2/version_0
my_experiment/trial3/version_0

Then, run analysis using

python music_trees analyze.py my_experiment   <OUTPUT_NAME> 

the figures will be created under /analysis/<OUTPUT_NAME>

To generate paper-ready figures, see scripts/figures.ipynb.

Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022