Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Overview

Music Trees

Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

train-test splits and hierarchies.

  • For all experiments, we used the instrument-based split in /music_trees/assets/partitions/mdb-aug.json.
  • To view our Hornbostel-Sachs class hierarchy, see /music_trees/assets/taxonomies/deeper-mdb.yaml. Note that not all of the instruments on this taxonomy are used in our experiments.
  • All random taxonomies are in /music_trees/assets/taxonomies/scrambled-*.yaml

Installation

first, clone the medleydb repo and install using pip install -e:

  • medleydb from marl

Now, download the medleydb and mdb 2.0 datasets from zenodo.

install some utilities for visualizing the embedding space:

git clone https://github.com/hugofloresgarcia/embviz.git
cd embviz
pip install -e .

then, clone this repo and install with

pip install -e .

Usage

1. Generate data

Make sure the MEDLEYDB_PATH environment variable is set (see the medleydb repo for more instructions ). Then, run the generation script:

python -m music_trees.generate \
                --dataset mdb \
                --name mdb-aug \
                --example_length 1.0 \
                --augment true \
                --hop_length 0.5 \
                --sample_rate 16000 \

This will generate both augmented and unaugmented data for MedleyDB. NOTE: There was a bug in the code that disabled data augmentation silently. This bug has been left in the code for the sake of reproducibility. This is why we don't report any data augmentation in the paper, as none was applied at the time of experiments.

2. Partition data

The partition file used for all experiments is available at /music_trees/assets/partitions/mdb-aug.json.

3. Run experiments

The search script will train all models for a particular experiment. It will grab as many GPUs are available (use CUDA_VISIBLE_DEVICES to change the availability of GPUs) and train as many models as it can in parallel.

Each model will be stored under /runs/<NAME>/<VERSION>.

Arbitrary Hierarchies

python music_trees/search.py --name scrambled-tax

Height Search (note that height=0 and height=1 are the baseline and proposed model, respectively)

python music_trees/search.py --name height-v1

Loss Ablation

python music_trees/search.py --name loss-alpha

train the additional BCE baseline:

python music_trees/train.py --model_name hprotonet --height 4 --d_root 128 --loss_alpha 1 --name "flat (BCE)" --dataset mdb-aug --learning_rate 0.03 --loss_weight_fn cross-entropy

4. Evaluate

Perform evaluation on a model. Make sure to pass the path to the run that you wish to evaluate.

To evaluate a model:

python music_trees/eval.py --exp_dir <PATH_TO_RUN>/<VERSION>

Each model will store its evaluation results under /results/<NAME>/<VERSION>

5. Analyze

To compare models and generate analysis figures and tables, place of all the results folders you would like to analyze under a single folder. The resulting folder should look like this:

my_experiment/trial1/version_0
my_experiment/trial2/version_0
my_experiment/trial3/version_0

Then, run analysis using

python music_trees analyze.py my_experiment   <OUTPUT_NAME> 

the figures will be created under /analysis/<OUTPUT_NAME>

To generate paper-ready figures, see scripts/figures.ipynb.

Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
wlad 2 Dec 19, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023