A set of examples around hub for creating and processing datasets

Related tags

Deep Learningexamples
Overview


Examples for Hub - Dataset Format for AI

A repository showcasing examples of using Hub

Colab Tutorials

Notebook Link
Getting Started with Hub Open In Colab
Creating Object Detection Datasets Open In Colab
Creating Complex Detection Datasets Open In Colab
Data Processing Using Parallel Computing Open In Colab
Training an Image Classification Model in PyTorch Open In Colab

Getting Started with Hub 🚀

Installation

Hub is written in 100% python and can be quickly installed using pip.

pip3 install hub

Creating Datasets

A hub dataset can be created in various locations (Storage providers). This is how the paths for each of them would look like:

Storage provider Example path
Hub cloud hub://user_name/dataset_name
AWS S3 s3://bucket_name/dataset_name
GCP gcp://bucket_name/dataset_name
Local storage path to local directory
In-memory mem://dataset_name

Let's create a dataset in the Hub cloud. Create a new account with Hub from the terminal using activeloop register if you haven't already. You will be asked for a user name, email id and passowrd. The user name you enter here will be used in the dataset path.

$ activeloop register
Enter your details. Your password must be atleast 6 characters long.
Username:
Email:
Password:

Initialize an empty dataset in the hub cloud:

import hub

ds = hub.empty("hub://<USERNAME>/test-dataset")

Next, create a tensor to hold images in the dataset we just initialized:

images = ds.create_tensor("images", htype="image", sample_compression="jpg")

Assuming you have a list of image file paths, lets upload them to the dataset:

image_paths = ...
with ds:
    for image_path in image_paths:
        image = hub.read(image_path)
        ds.images.append(image)

Alternatively, you can also upload numpy arrays. Since the images tensor was created with sample_compression="jpg", the arrays will be compressed with jpeg compression.

import numpy as np

with ds:
    for _ in range(1000):  # 1000 random images
        radnom_image = np.random.randint(0, 256, (100, 100, 3))  # 100x100 image with 3 channels
        ds.images.append(image)

Loading Datasets

You can load the dataset you just created with a single line of code:

import hub

ds = hub.load("hub://<USERNAME>/test-dataset")

You can also access other publicly available hub datasets, not just the ones you created. Here is how you would load the Objectron Bikes Dataset:

import hub

ds = hub.load('hub://activeloop/objectron_bike_train')

To get the first image in the Objectron Bikes dataset in numpy format:

image_arr = ds.image[0].numpy()

Documentation

Getting started guides, examples, tutorials, API reference, and other usage information can be found on our documentation page.

Owner
Activeloop
Activeloop
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022