Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

Related tags

Deep LearningSimCLS
Overview

SimCLS

Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

1. How to Install

Requirements

  • python3
  • conda create --name env --file spec-file.txt
  • pip3 install -r requirements.txt

Description of Codes

  • main.py -> training and evaluation procedure
  • model.py -> models
  • data_utils.py -> dataloader
  • utils.py -> utility functions
  • preprocess.py -> data preprocessing

Workspace

Following directories should be created for our experiments.

  • ./cache -> storing model checkpoints
  • ./result -> storing evaluation results

2. Preprocessing

We use the following datasets for our experiments.

For data preprocessing, please run

python preprocess.py --src_dir [path of the raw data] --tgt_dir [output path] --split [train/val/test] --cand_num [number of candidate summaries]

src_dir should contain the following files (using test split as an example):

  • test.source
  • test.source.tokenized
  • test.target
  • test.target.tokenized
  • test.out
  • test.out.tokenized

Each line of these files should contain a sample. In particular, you should put the candidate summaries for one data sample at neighboring lines in test.out and test.out.tokenized.

The preprocessing precedure will store the processed data as seperate json files in tgt_dir.

We have provided an example file in ./example.

3. How to Run

Hyper-parameter Setting

You may specify the hyper-parameters in main.py.

Train

python main.py --cuda --gpuid [list of gpuid] -l

Fine-tune

python main.py --cuda --gpuid [list of gpuid] -l --model_pt [model path]

Evaluate

python main.py --cuda --gpuid [single gpu] -e --model_pt [model path]

4. Results

CNNDM

ROUGE-1 ROUGE-2 ROUGE-L
BART 44.39 21.21 41.28
Ours 46.67 22.15 43.54

XSum

ROUGE-1 ROUGE-2 ROUGE-L
Pegasus 47.10 24.53 39.23
Ours 47.61 24.57 39.44

Our model outputs on these datasets can be found in ./output.

Owner
Yixin Liu
Yixin Liu
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(εˆ˜ζ²›δΈœ) 54 Dec 17, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) πŸ‘š [Paper] πŸ‘– [Webpage] πŸ‘— [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022