Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

Overview

ProGen - (wip)

Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily transferrable between the two)

Install

$ pip install progen-transformer

Usage

from jax import random
from haiku import PRNGSequence
from progen_transformer import ProGen

model = ProGen(
    num_tokens = 256,
    dim = 512,
    seq_len = 1024,
    window_size = 256,       # local attention window size
    depth = 12,              # depth
    heads = 8,               # attention heads
    dim_head = 64,           # dimension per head
    ff_glu = True,           # use GLU in feedforward, from Noam's paper
    global_mlp_depth = 2     # last N global gmlp layers
)

rng = PRNGSequence(42)
seq = random.randint(next(rng), (1024,), 0, 256)

params = model.init(next(rng), seq)
logits = model.apply(params, next(rng), seq) # (1024, 256)

Training from Uniref

Download Uniref50 from UniProt and place uniref50.fasta in the root directory

$ python gen_train_data.py

You should see a lot of green if everything succeeds. Then

$ python train.py

By default, the script will checkpoint and resume automatically, but if you wish to clear your progress and restart, just add a --new flag

$ python train.py --new

Model checkpoints will be saved periodically to ./ckpts

Todo

  • train tfrecords from google cloud storage path
  • generate validation tfrecords
  • add panda integration with GO annotations
  • resume from correct place in tfrecord even if batch size is changed inbetween runs, display number of sequences processed (aiming for 1 billion)
  • model parallelism with pjit
  • bfloat16 on xla
  • checkpoint and resume from a google cloud storage path
  • config to annotation to template string with jinja2 - use jinja2 for wandb html logging as well
  • manage experimental tracker state, and also allow ability to turn it off by piping to noop
  • add a confirmation before clearing a folder for --new run
  • engineer mask in cross entropy loss so that padding can be reused as end-of-string token
  • flip seq # annotation order with prob set in config
  • keep N last checkpoints

Citations

@misc{madani2020progen,
    title   = {ProGen: Language Modeling for Protein Generation}, 
    author  = {Ali Madani and Bryan McCann and Nikhil Naik and Nitish Shirish Keskar and Namrata Anand and Raphael R. Eguchi and Po-Ssu Huang and Richard Socher},
    year    = {2020},
    eprint  = {2004.03497},
    archivePrefix = {arXiv},
    primaryClass = {q-bio.BM}
}
@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding},
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
You might also like...
Implementation of the GVP-Transformer, which was used in the paper
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

A pytorch-version implementation codes of paper:
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

 Generative Models for Graph-Based Protein Design
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

Comments
  • protein bert uniref90 dataset

    protein bert uniref90 dataset

    (discussed in discord)

    after running the first step (create_uniref_db) of https://github.com/nadavbra/protein_bert I got a 24GB file "uniref_proteins_and_annotations.db" . It seems it could be useful for generate sequences for this project, sharing the links there

    • https://gitlab.com/rom1504/uniref data
    • colab to get the db and do a few queries https://colab.research.google.com/drive/1BGYEBDmD0yToLNou2T-t-QbJV5wCtIBz#scrollTo=21U3PpCp-pxr There are 135301051 records in the db, in a table looking like:
    CREATE TABLE "protein_annotations" (
        "index"    INTEGER,
        "tax_id"    REAL,
        "uniprot_name"    TEXT,
        "go_annotations"    TEXT,
        "flat_go_annotations"    TEXT,
        "n_go_annotations"    INTEGER,
        "complete_go_annotation_indices"    TEXT,
        "n_complete_go_annotations"    INTEGER
    );
    

    Sample look like this:

    | | index | tax_id | uniprot_name | go_annotations | flat_go_annotations | n_go_annotations | complete_go_annotation_indices | n_complete_go_annotations | |---:|--------:|-----------------:|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|-------------------:|:---------------------------------|----------------------------:| | 0 | 0 | 1.57204e+06 | A0A5A9P0L4_9TELE | {"GO Molecular Function": ["GO:0003755", "GO:0005524", "GO:0004672", "GO:0005509"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0003755", "GO:0004672", "GO:0005509", "GO:0005524"] | 4 | [2761, 3561, 4193, 4205] | 4 | | 1 | 1 | 648755 | UPI0016133188 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 2 | 2 | 1.93059e+06 | A0A410P257_9BACT | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 3 | 3 | 519421 | UPI0019403D63 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 4 | 4 | 72004 | A0A6B0RPA5_9CETA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0004672", "GO:0005524"] | 2 | [3561, 4205] | 2 | | 5 | 5 | 375764 | A0A672ZWI7_9TELE | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 6 | 6 | 1.41558e+06 | A0A6P7YNV3_9AMPH | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 | | 7 | 7 | 240159 | A0A4U5TZD8_COLLU | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0016021", "GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886", "GO:0016021"] | 4 | [3561, 4205, 4526, 10019] | 4 | | 8 | 8 | 146911 | UPI00074FFD9C | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 9 | 9 | 260995 | A0A6P8RG40_GEOSA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 |

    opened by rom1504 4
Releases(0.0.36)
Owner
Phil Wang
Working with Attention
Phil Wang
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
571 Dec 25, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022