DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Overview

DeepCAD

This repository provides source code for our paper:

DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Rundi Wu, Chang Xiao, Changxi Zheng

ICCV 2021 (camera ready version coming soon)

We also release the Onshape CAD data parsing scripts here: onshape-cad-parser.

Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN
  • Python 3.7, PyTorch 1.5+

Dependencies

Install python package dependencies through pip:

$ pip install -r requirements.txt

Install pythonocc (OpenCASCADE) by conda:

$ conda install -c conda-forge pythonocc-core=7.5.1

Data

Download data from here (backup) and extract them under data folder.

  • cad_json contains the original json files that we parsed from Onshape and each file describes a CAD construction sequence.
  • cad_vec contains our vectorized representation for CAD sequences, which serves for fast data loading. They can also be obtained using dataset/json2vec.py. TBA.
  • Some evaluation metrics that we use requires ground truth point clouds. Run:
    $ cd dataset
    $ python json2pc.py --only_test

The data we used are parsed from Onshape public documents with links from ABC dataset. We also release our parsing scripts here for anyone who are interested in parsing their own data.

Training

See all hyper-parameters and configurations under config folder. To train the autoencoder:

$ python train.py --exp_name newDeepCAD -g 0

For random generation, further train a latent GAN:

# encode all data to latent space
$ python test.py --exp_name newDeepCAD --mode enc --ckpt 1000 -g 0

# train latent GAN (wgan-gp)
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 -g 0

The trained models and experment logs will be saved in proj_log/newDeepCAD/ by default.

Testing and Evaluation

Autoencoding

After training the autoencoder, run the model to reconstruct all test data:

$ python test.py --exp_name newDeepCAD --mode rec --ckpt 1000 -g 0

The results will be saved inproj_log/newDeepCAD/results/test_1000 by default in the format of h5 (CAD sequence saved in vectorized representation).

To evaluate the results:

$ cd evaluation
# for command accuray and parameter accuracy
$ python evaluate_ae_acc.py --src ../proj_log/newDeepCAD/results/test_1000
# for chamfer distance and invalid ratio
$ python evaluate_ae_cd.py --src ../proj_log/newDeepCAD/results/test_1000 --parallel

Random Generation

After training the latent GAN, run latent GAN and the autoencoder to do random generation:

# run latent GAN to generate fake latent vectors
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 --ckpt 200000 --test --n_samples 9000 -g 0

# run the autoencoder to decode into final CAD sequences
$ python test.py --exp_name newDeepCAD --mode dec --ckpt 1000 --z_path proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000.h5 -g 0

The results will be saved inproj_log/newDeepCAD/lgan_1000/results by default.

To evaluate the results by COV, MMD and JSD:

$ cd evaluation
$ sh run_eval_gen.sh ../proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000_dec 1000 0

The script run_eval_gen.sh combines collect_gen_pc.py and evaluate_gen_torch.py. You can also run these two files individually with specified arguments.

Pre-trained models

Download pretrained model from here (backup) and extract it under proj_log. All testing commands shall be able to excecuted directly, by specifying --exp_name=pretrained when needed.

Visualization and Export

We provide scripts to visualize CAD models and export the results to .step files, which can be loaded by almost all modern CAD softwares.

$ cd utils
$ python show.py --src {source folder} # visualize with opencascade
$ python export2step.py --src {source folder} # export to step format

Script to create CAD modeling sequence in Onshape according to generated outputs: TBA.

Acknowledgement

We would like to thank and acknowledge referenced codes from DeepSVG, latent 3d points and PointFlow.

Cite

Please cite our work if you find it useful:

@InProceedings{wu2021deepcad,
author = {Wu, Rundi and Xiao, Chang and Zheng, Changxi},
title = {DeepCAD: A Deep Generative Network for Computer-Aided Design Models},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}
Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022