9th place solution

Overview

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution

Team Members

  • Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer at LINE Corp. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Bo Liu is currently a Senior Deep Learning Data Scientist at NVIDIA based in the U.S. and a Kaggle Competition Grandmaster.

  • Fuxu Liu is currently a Algorithm Engineer at ReadSense based in the China. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Daishu is currently a Senior Research Scientist at Galixir. Kaggle Competition Grandmaster.

Methods

Overview of Methods

Image-to-cell augmentation module

We used two methods to train and make predictions in our pipeline.

Firstly, we use 512 x 512 image size to train and test. For predicting, we loop n times for each image (n is the number of cells in the image), leaving only one cell in each time and masking out the other cells to get single cell predictions.

The second method is trained with 768 x 786 images with random crop to 512 x 512 then tested almost the same way as our first approach. Specifically, we not only mask out the other cells but reposition of the cells in the left to the center of the image as well.

The two methods share the same training process, in which we incorporate two augmentation approach specifically designed for this task, in addition to regular augmentation methods such as random rotation, flipping, cropping, cutout and brightness adjusting. The first augmentation approach is, with a small probability, multiplying the data of the green channel (protein) by a random number in the range of [0.0,0.1] while setting the label to negative to improve the model's ability to recognize negative samples. The other augmentation approach is, with a small probability, setting the green channel to red (Microtubules) or yellow (Endoplasmicreticulum), multiplying it by a random number in the range of [0.6,1.0] and changing the label to the Microtubules or Endoplasmicreticulum.

pseudo-3D cell augmentation module

We pre-crop all the cells of each image and save them locally. Then during training, for each image we randomly select 16 cells. We then set bs=32, so for each batch we have 32x16=512 cells in total.

We resize each cell to 128x128, so the returned data shape from the dataloader is (32, 16, 4, 128, 128) . Next we reshape it into (512, 4, 128, 128) and then use a very common CNN to forward it, the output shape is (512, 19).

In the prediction phase we use the predicted average of different augmented images of a cell as the predicted value for each cell. But during the training process, we rereshape this (512, 19) prediction back into (32, 16, 19) . Then the loss is calculated for each cell with image-level GT label.

Featurziation with deep neural network

We use multipe CNN variants to train, such as EfficientNet, ResNet, DenseNet.

Classification

We average the different model predictions from different methods.

Tree-Structured Directory

├── input

│   ├──hpa-512: 512-image and 512-cell mask

│   │   ├── test

│   │   ├── test_cell_mask

│   │   ├── train

│   │   └── train_cell_mask

│   ├── hpa-seg : official segmentation models

│   └── hpa-single-cell-image-classification : official data and kaggle_2021.tsv

├── output : logs, models and submission

Code

  • S1_external_data_download.py: download external train data

  • S2_data_process.py: generate 512-image and 512-cell mask

  • S3_train_pipeline1.py: train image-to-cell augmentation module

  • S4.1_crop_cells.py: crop training cells for pseudo-3D cell augmentation module

  • S4.2_train_pipeline2.py: train pseudo-3D cell augmentation module

  • S5_predict.py: generate submission.csv

Owner
daishu
daishu
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022