Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Overview

Value Retrieval with Arbitrary Queries for Form-like Documents

Introduction

Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Environment

CUDA="11.0"
CUDNN="8"
UBUNTU="18.04"

Install

bash install.sh
git clone https://github.com/NVIDIA/apex && cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
pip install .
# under our project root folder
pip install .

Data Preparation

Our model is pre-trained on IIT-CDIP dataset, fine-tuned on FUNSD train set and evaluated on FUNSD test set and INV-CDIP test set.

  • Download our processed OCR results of IIT-CDIP with hocr_list_addr.txt and put under PRETRAIN_DATA_FOLDER/.

  • Download our processed FUNSD and INV-CDIP datasets and put under DATA_DIR/.

Reproduce Our Results

  • Download our model fine-tuned on FUNSD here.

  • Do inference following

# $MODEL_PATH here is where you save the fine-tuned model.
# DATASET_NAME is FUNSD or INV-CDIP.
bash reproduce_results.sh $MODEL_PATH $DATA_DIR/DATASET_NAME
  • You should get the following results.
Datasets Precision Recall F1
FUNSD 60.4 60.9 60.7
INV-CDIP 50.5 47.6 49.0

Pre-training

  • You can skip the following steps by downloading our pre-trained SimpleDLM model here.

  • Or download layoutlm-base-uncased.

  • Do pre-training following

# $NUM_GPUS is the number of gpus you want to do the pretraining on. To reproduce the paper's results we recommend to use 8 gpus.
# $MODEL_PATH here is where you save the LayoutLM model.
# $PRETRAIN_DATA_FOLDER is the folder of IIT-CDIP hocr files.

python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS pretraining.py \
--model_name_or_path $MODEL_PATH  --data_dir $PRETRAIN_DATA_FOLDER \
--output_dir $OUTPUT_DIR

Fine-tuning

  • Do fine-tuning following
# $MODEL_PATH is where you save the pre-trained simpleDLM model.

CUDA_VISIBLE_DEVICES=0 python run_query_value_retrieval.py --model_type simpledlm --model_name_or_path $MODEL_PATH \
--data_dir $DATA_DIR/FUNSD/ --output_dir $OUTPUT_DIR --do_train --evaluate_during_training

Citation

If you find this codebase useful, please cite our paper:

@article{gao2021value,
  title={Value Retrieval with Arbitrary Queries for Form-like Documents},
  author={Gao, Mingfei and Xue, Le and Ramaiah, Chetan and Xing, Chen and Xu, Ran and Xiong, Caiming},
  journal={arXiv preprint arXiv:2112.07820},
  year={2021}
}

Contact

Please send an email to [email protected] or [email protected] if you have questions.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022