Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Overview

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Trevor Ablett, Daniel (Yifan) Zhai, Jonathan Kelly

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’21)

Paper website: https://papers.starslab.ca/multiview-manipulation/
arXiv paper: https://arxiv.org/abs/2104.13907
DOI: https://doi.org/10.1109/IROS51168.2021.9636440


This work was motivated by a relatively simple question: will increasingly popular end-to-end visuomotor policies work on a mobile manipulator, where the angle of the base will not be repeatable from one execution of a task to another? We conducted a variety of experiments to show that, naively, policies trained on fixed-base data with imitation learning do not generalize to various poses, and also generate multiview datasets and corresponding multiview policies to remedy the problem.

This repository contains the source code for reproducing our results and plots.

Requirements

We have only tested in python 3.7. Our simulated environments use pybullet, and our training code uses TensorFlow 2.x, specifically relying on our manipulator-learning package. All requirements (for simulated environments) are automatically installed by following Setup below.

Our policies also use the groups argument in TensorFlow Conv2d, which requires a GPU.

Setup

Preliminary note on TensorFlow install

This repository uses TensorFlow with GPU support, which can of course can be a bit of a pain to install. If you already have it installed, ignore this message. Otherwise, we have found the following procedure to work:

  1. Install conda.
  2. Create a new conda env to use for this work and activate it.
  3. Run the following to install a version of TensorFlow that may work with Conda
conda install cudatoolkit cudnn
pip install tensorflow==2.6.* tensorflow-probability==0.14

Now you can continue with the regular installation.

Regular Installation

Clone this repository and install in your python environment with pip.

git clone [email protected]:utiasSTARS/multiview-manipulation.git && cd multiview-manipulation
pip install -e .

A Note on Environment Names

The simulated environments that we use are all available in our manipulator-learning package and are called:

  • ThingLiftXYZImage
  • ThingLiftXYZMultiview
  • ThingStackSameImageV2
  • ThingStackSameMultiviewV2
  • ThingPickAndInsertSucDoneImage
  • ThingPickAndInsertSucDoneMultiview
  • ThingDoorImage
  • ThingDoorMultiview

The real environments we use with our mobile manipulator will, of course, be harder to reproduce, but were generated using our thing-gym-ros repository and are called:

  • ThingRosPickAndInsertCloser6DOFImageMB
  • ThingRosDrawerRanGrip6DOFImageMB
  • ThingRosDoorRanGrip6DOFImage
  • ThingRosDoorRanGrip6DOFImageMB

Running and Training Behavioural Cloning (BC) policies

The script in this repository can actually train and test (multiple)policies all in one shot.

  1. Choose one of:

    1. Train and test policies all at once. Download and uncompress any of the simulated expert data (generated using an HTC Vive hand tracker) from this Google Drive Folder.
    2. Generate policies using the procedure outlined in the following section.
    3. Download policies from this Google Drive Folder. We'll assume that you downloaded ThingDoorMultiview_bc_models.zip.

    If you choose i., your folder structure should be:

     .
     └── multiview-manipulation/
         ├── multiview_manipulation/
         └── data/
             ├── bc_models/
             └── demonstrations/
                 ├── ThingDoorMultiview/
                     ├── depth/
                     ├── img/
                     ├── data.npz
                     └── data_swp.npz
    

    If you choose ii. or iii., your folder structure should be:

    .
    └── multiview-manipulation/
        ├── multiview_manipulation/
        └── data/
            └── bc_models/
                ├── ThingDoorMultiview_25_trajs_1/
                ├── ThingDoorMultiview_25_trajs_2/
                ├── ThingDoorMultiview_25_trajs_3/
                ├── ThingDoorMultiview_25_trajs_4/
                ├── ThingDoorMultiview_25_trajs_5/   
                ├── ThingDoorMultiview_50_trajs_1/   
                └── ...   
    
  2. Modify the following options in multiview_manipulation/policies/test_policies.py to match your system and selected data:

    • main_data_dir: top level data directory (default: data)
    • bc_models_dir: top level trained BC models directory (default: bc_models)
    • expert_data_dir: top level expert data directory (default: demonstrations, only required if option i. above was selected).
  3. Change the following options to choose whether you want to test policies in a different environment from which they were trained in (e.g., as stated in the paper, you can test a ThingDoorMultiview policy in both ThingDoorMultiview and ThingDoorImage):

    • env_name: environment to test policy in
    • policy_env_name: name of environment that data for policy was generated from.
  4. Modify the options for choosing which policies to train/test:

    • bc_ckpts_num_traj: The different number of trajectories to use for training/trained policies (default: range(200, 24, -25))
    • seeds: Which seeds to use (default: [1, 2, 3, 4, 5])
  5. Run the script:

python multiview_manipulation/policies/test_policies.py
  1. Your results will show up in data/bc_results/{env_name}_{env_seed}_{experiment_name}.

Training policies with Behavioural Cloning (BC) only

  1. Download and uncompress any of simulated expert data from this Google Drive Folder. We'll assume that you downloaded ThingDoorMultiview.tar.gz and uncompressed it as ThingDoorMultiview.

  2. Modify the following options in multiview_manipulation/policies/gen_policies.py to match your system and selected data:

    • bc_models_dir: top level directory for trained BC models (default: data/bc_models)
    • expert_data_dir: top level directory for expert data (default: data/demonstrations)
    • dataset_dir: the name of the directory containing depth/, img/, data.npz and data_swp.npz.
    • env_str: The string corresponding to the name of the environment (only used for the saved BC policy name)

    For example, if you're using the default folder structure, your setup should look like this:

    .
    └── multiview-manipulation/
        ├── multiview_manipulation/
        └── data/
            ├── bc_models/
            └── demonstrations/
                ├── ThingDoorMultiview/
                    ├── depth/
                    ├── img/
                    ├── data.npz
                    └── data_swp.npz
    
  3. Modify the options for choosing which policies to train:

    • bc_ckpts_num_traj: The different number of trajectories to use for training policies (default: range(25, 201, 25))
    • seeds: Which seeds to train for (default: [1, 2, 3, 4, 5])
  4. Run the file:

python multiview_manipulation/policies/gen_policies.py
  1. Your trained policies will show up in individual folders under the bc_models folder as {env_str}_{num_trajs}_trajs_{seed}/.

Collecting Demonstrations

All of our demonstrations were collected using the collect_demos.py file from the manipulator-learning package and an HTC Vive Hand Tracker. To collect demonstrations, you would use, for example:

git clone [email protected]:utiasSTARS/manipulator-learning.git && cd manipulator-learning
pip install -e .
pip install -r device_requirements.txt
python manipulator_learning/learning/imitation/collect_demos.py --device vr --directory demonstrations --demo_name ThingDoorMultiview01 --environment ThingDoorMultiview

You can also try using the keyboard with:

python manipulator_learning/learning/imitation/collect_demos.py --device keyboard --directory demonstrations --demo_name ThingDoorMultiview01 --environment ThingDoorMultiview

More instructions can be found in the manipulator-learning README.

Real Environments

Although it would be nearly impossible to exactly reproduce our results with our real environments, the code we used for generating our real environments can be found in our thing-gym-ros repository.

Citation

If you use this in your work, please cite:

@inproceedings{2021_Ablett_Seeing,
    address = {Prague, Czech Republic},
    author = {Trevor Ablett and Yifan Zhai and Jonathan Kelly},
    booktitle = {Proceedings of the {IEEE/RSJ} International Conference on Intelligent Robots and Systems {(IROS'21)}},
    date = {2021-09-27/2021-10-01},
    month = {Sep. 27--Oct. 1},
    site = {https://papers.starslab.ca/multiview-manipulation/},
    title = {Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations},
    url = {http://arxiv.org/abs/2104.13907},
    video1 = {https://youtu.be/oh0JMeyoswg},
    year = {2021}
}
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022