PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Related tags

Deep LearningPNDM
Overview

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM)

PWC

This repo is the official PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

by Luping Liu, Yi Ren, Zhijie Lin, Zhou Zhao (Zhejiang University).

What does this code do?

This code is not only the official implementation for PNDM, but also a generic framework for DDIM-like models including:

Structure

This code contains three main objects including method, schedule and model. The following table shows the options supported by this code and the role of each object.

Object Option Role
method DDIM, S-PNDM, F-PNDM, FON, PF the numerical method used to generate samples
schedule linear, quad, cosine the schedule of adding noise to images
model DDIM, iDDPM, PF, PF_deep the neural network used to fit noise

All of them can be combined at will, so this code provide at least 5x3x4=60 choices to generate samples.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code.

pip install -r requirements.txt

Tip: mpi4py can make the generation process faster using multi-gpus. It is not necessary and can be removed freely.

Usage

Evaluate our models through main.py.

python main.py --runner sample --method F-PNDM --sample_speed 50 --device cuda --config ddim-cifar10.yml --image_path temp/results --model_path temp/models/ddim/ema_cifar10.ckpt
  • runner (train|sample): choose the mode of runner
  • method (DDIM|FON|S-PNDM|F-PNDM|PF): choose the numerical methods
  • sample_speed: control the total generation step
  • device (cpu|cuda:0): choose the device to use
  • config: choose the config file
  • image_path: choose the path to save images
  • model_path: choose the path of model

Train our models through main.py.

python main.py --runner train --device cuda --config ddim-cifar10.yml --train_path temp/train
  • train_path: choose the path to save training status

Checkpoints & statistics

All checkpoints of models and precalculated statistics for FID are provided in this Onedrive.

References

If you find the code useful for your research, please consider citing:

@inproceedings{liu2022pseudo,
    title={Pseudo Numerical Methods for Diffusion Models on Manifolds},
    author={Luping Liu and Yi Ren and Zhijie Lin and Zhou Zhao},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=PlKWVd2yBkY}
}

This work is built upon some previous papers which might also interest you:

  • Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
  • Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. International Conference on Learning Representations. 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. International Conference on Learning Representations. 2020.
Owner
Luping Liu (刘路平)
Luping Liu (刘路平)
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022