Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Related tags

Deep LearningL2B
Overview

Learning to Bootstrap for Combating Label Noise

This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise".

Citation

If you use this code for your research, please cite our paper "Learning to Bootstrap for Combating Label Noise".

@misc{zhou2022learning,
      title={Learning to Bootstrap for Combating Label Noise}, 
      author={Yuyin Zhou and Xianhang Li and Fengze Liu and Xuxi Chen and Lequan Yu and Cihang Xie and Matthew P. Lungren and Lei Xing},
      year={2022},
      eprint={2202.04291},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Requirements

Python >= 3.6.4
Pytorch >= 1.6.0
Higher = 0.2.1
Tensorboardx = 2.4.1

Training

First, please create a folder to store checkpoints by using the following command.

mkdir checkpoint

CIFAR-10

To reproduce the results on CIFAR dataset from our paper, please follow the command and our hyper-parameters.

First, you can adjust the corruption_prob and corruption_type to obtain different noise rates and noise type.

Second, the reweight_label indicates you are using the our L2B method. You can change it to baseline or mixup.

python  main.py  --arch res18 --dataset cifar10 --num_classes 10 --exp L2B --train_batch_size  512 \
 --corruption_prob 0.2 --reweight_label  --lr 0.15  -clipping_norm 0.25  --num_epochs 300  --scheduler cos \
 --corruption_type unif  --warm_up 10  --seed 0  

CIFAR-100

Most of settings are the same as CIFAR-10. To reproduce the results, please follow the command.

python  main.py  --arch res18 --dataset cifar100 --num_classes 100 --exp L2B --train_batch_size  256  \
--corruption_prob 0.2 --reweight_label  --lr 0.15  --clipping_norm 0.80  --num_epochs 300  --scheduler cos \
--corruption_type unif  --warm_up 10  --seed 0 \ 

ISIC2019

On the ISIC dataset, first you should download the dataset by following command.

Download ISIC dataset as follows:
wget https://isic-challenge-data.s3.amazonaws.com/2019/ISIC_2019_Training_Input.zip
wget https://isic-challenge-data.s3.amazonaws.com/2019/ISIC_2019_Training_GroundTruth.csv \

Then you can reproduce the results by following the command.

python main.py  --arch res50  --dataset ISIC --data_path isic_data/ISIC_2019_Training_Input --num_classes 8 
--exp L2B  --train_batch_size 64  --corruption_prob 0.2 --lr 0.01 --clipping_norm 0.80 --num_epochs 30 
--temperature 10.0  --wd 5e-4  --scheduler cos --reweight_label --norm_type softmax --warm_up 1 

Clothing-1M

First, the num_batch and train_batch_size indicates how many training images you want to use (we sample a balanced training data for each epoch).

Second, you can adjust the num_meta to sample different numbers of validation images to form the metaset. We use the whole validation set as metaset by default.

The data_path is where you store the data and key-label lists. And also change the data_path in the line 20 of main.py. If you have issue for downloading the dataset, please feel free to contact us.

Then you can reproduce the results by following the command.

python main.py --arch res18_224 --num_batch 250 --dataset clothing1m \
--exp L2B_clothing1m_one_stage_multi_runs  --train_batch_size 256  --lr 0.005  \
--num_epochs 300  --reweight_label  --wd 5e-4 --scheduler cos   --warm_up 0 \
--data_path /data1/data/clothing1m/clothing1M  --norm_type org  --num_classes 14 \ 
--multi_runs 3 --num_meta 14313

Contact

Yuyin Zhou

Xianhang Li

If you have any question about the code and data, please contact us directly.

Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022