Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Overview

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

This tutorial shows how to use Keras library to build deep neural network for ultrasound image nerve segmentation. More info on this Kaggle competition can be found on https://www.kaggle.com/c/ultrasound-nerve-segmentation.

This deep neural network achieves ~0.57 score on the leaderboard based on test images, and can be a good staring point for further, more serious approaches.

The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation.


Update 02.04.2017.

Changes:

  • using Keras 2
  • using TF backend instead of Theano
  • using scikit-image instead of cv2
  • added code for saving predicted images to disk
  • training data is now split into train/validation data (80%/20%)

Overview

Data

Provided data is processed by data.py script. This script just loads the images and saves them into NumPy binary format files .npy for faster loading later.

Pre-processing

The images are not pre-processed in any way, except resizing to 96 x 96. Since the images are pretty noisy, I expect that some thoughtful pre-processing could yield better performance of the model.

Output images (masks) are scaled to [0, 1] interval.

Model

The provided model is basically a convolutional auto-encoder, but with a twist - it has skip connections from encoder layers to decoder layers that are on the same "level". See picture below (note that image size and numbers of convolutional filters in this tutorial differs from the original U-Net architecture).

img/u-net-architecture.png

This deep neural network is implemented with Keras functional API, which makes it extremely easy to experiment with different interesting architectures.

Output from the network is a 96 x 96 which represents mask that should be learned. Sigmoid activation function makes sure that mask pixels are in [0, 1] range.

Training

The model is trained for 20 epochs, where each epoch took ~30 seconds on Titan X. Memory footprint of the model is ~800MB.

After 20 epochs, calculated Dice coefficient is ~0.68, which yielded ~0.57 score on leaderboard, so obviously this model overfits (cross-validation pull requests anyone? ;)).

Loss function for the training is basically just a negative of Dice coefficient (which is used as evaluation metric on the competition), and this is implemented as custom loss function using Keras backend - check dice_coef() and dice_coef_loss() functions in train.py for more detail. Also, for making the loss function smooth, a factor smooth = 1 factor is added.

The weights are updated by Adam optimizer, with a 1e-5 learning rate. During training, model's weights are saved in HDF5 format.


How to use

Dependencies

This tutorial depends on the following libraries:

  • scikit-image
  • Tensorflow
  • Keras >= 2.0

Also, this code should be compatible with Python versions 2.7-3.5.

Prepare the data

In order to extract raw images and save them to .npy files, you should first prepare its structure. Make sure that raw dir is located in the root of this project. Also, the tree of raw dir must be like:

-raw
 |
 ---- train
 |    |
 |    ---- 1_1.tif
 |    |
 |    ---- …
 |
 ---- test
      |
      ---- 1.tif
      |
      ---- …
  • Now run python data.py.

Running this script will create train and test images and save them to .npy files.

Define the model

  • Check out get_unet() in train.py to modify the model, optimizer and loss function.

Train the model and generate masks for test images

  • Run python train.py to train the model.

Check out train_predict() to modify the number of iterations (epochs), batch size, etc.

After this script finishes, in imgs_mask_test.npy masks for corresponding images in imgs_test.npy should be generated. I suggest you examine these masks for getting further insight of your model's performance.

Generate submission

  • Run python submission.py to generate the submission file submission.csv for the generated masks.

Check out function submission() and run_length_enc() (thanks woshialex) for details.

About Keras

Keras is a minimalist, highly modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

allows for easy and fast prototyping (through total modularity, minimalism, and extensibility). supports both convolutional networks and recurrent networks, as well as combinations of the two. supports arbitrary connectivity schemes (including multi-input and multi-output training). runs seamlessly on CPU and GPU. Read the documentation Keras.io

Keras is compatible with: Python 2.7-3.5.

Owner
Marko Jocić
ML Engineer @ Apple
Marko Jocić
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022