Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

Related tags

Deep LearningArtFlow
Overview

ArtFlow

Official PyTorch implementation of the paper:

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An*, Siyu Huang*, Yibing Song, Dejing Dou, Wei Liu and Jiebo Luo
CVPR 2021

ArtFlow is a universal style transfer method that consists of reversible neural flows and an unbiased feature transfer module. ArtFlow adopts a projection-transfer-reversion scheme instead of the encoder-transfer-decoder to avoid the content leak issue of existing style transfer methods and consequently achieves unbiased style transfer in continuous style transfer.

Style Transfer Examples

Style Transfer Examples

Artistic Portrait Style Transfer Examples

We also train a model with the FFHQ dataset as the content and Metfaces as the style to convert a portrait photo into an artwork.

Portrait Style Transfer

Content Leak Phenomenon

When we continuously perform style transfer with a style transfer algorithm, the produced result will gradually lose the detail of the content image. The code in this repository solves this problem.

Content Leak Phenomenons

Dependencies

  • Python=3.6
  • PyTorch=1.8.1
  • CUDA=10.2
  • cuDNN=7.6
  • Scipy=1.5.2

Optionally, if you are a conda user, you can execute the following command in the directory of this repository to create a new environment with all dependencies installed.

conda env create -f environment.yaml

Pretrained Models

If you want to use pretrained models to perform style transfer, please download the pre-trained models in Google Drive and put the downloaded experiments directory under the root of this repository. Then execute the following command in the root of the repository.

Style Transfer

The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 -u test.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN
  • content_dir: path for the content images. Default is data/content.
  • style_dir: path for the style images. Default is data/style.
  • size: image size for style transfer. Default is 256.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • decoder: path for the pre-trained model, if you let the --operator wct, then you should load the pre-trained model with --decoder experiments/ArtFlow-WCT/glow.pth. Otherwise, if you use AdaIN, you should set --decoder experiments/ArtFlow-AdaIN/glow.pth. If you want to use this code for portrait style transfer, please set --operator adain and --decoder experiments/ArtFlow-AdaIN-Portrait/glow.pth.
  • output: path of the output directory. This code will produce a style transferred image for every content-style combination in your designated directories.

Continuous Style Transfer

We provide a script to make style transfer with a content and a series of style images to demonstrate that our code can avoid the content leak issue. The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 continuous_transfer.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN

All parameters are the same as the style transfer part above.

Testing

To test the style transfer performance of the pre-trained model with the given content and style images under data directory. Please run the following commands:

ArtFlow + AdaIN

bash test_adain.sh

The style transfer results will be saved in output_ArtFlow-AdaIN.

ArtFlow + WCT

bash test_wct.sh

The style transfer results will be saved in output_ArtFlow-WCT.

Training

To train ArtFlow by yourself. Please firstly download the Imagenet pre-trained VGG19 model from Google Drive and put the downloaded models directory under the root of the repository. Then run the following commands.

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --content_dir $training_content_dir --style_dir $training_style_dir --n_flow 8 --n_block 2 --operator adain --save_dir $param_save_dir --batch_size 4
  • content_dir: path for the training content images.
  • style_dir: path for the training style images.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • save_dir: path for saving the trained model.

The datasets we used for training in our experiments are as follows:

Model Content Style
General MS_COCO WikiArt
Portrait FFHQ Metfaces

If you want to reproduce the model in our experiments. Here are two bash scripts with our settings:

bash train_adain.sh
bash train_wct.sh

Please note that you may need to change the path of the train content and style datasets in the above two bash scripts.

Citation

@inproceedings{artflow2021,
 title={ArtFlow: Unbiased image style transfer via reversible neural flows},
 author={An, Jie and Huang, Siyu and Song, Yibing and Dou, Dejing and Liu, Wei and Luo, Jiebo},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 year={2021}
}

Acknowledgement

We thank the great work glow-pytorch, AdaIN and WCT as we benefit a lot from their codes and papers.

Contact

If you have any questions, please do not hesitate to contact [email protected] and [email protected].

Owner
writing toy code...
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023