SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

Overview

SymmetryNet

SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2020)

Created by Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz and Kai Xu

teaser

This repository includes:

  • tools: the training scripts and evaluation scripts
    • tools/train_shapenet.py: the training script for shapenet dataset
    • tools/train_ycb.py: the training script for ycb dataset
    • tools/train_scannet.py: the training script for scannet dataset
    • tools/evaluation: the evaluation scripts
      • evaluation/eval_ref_shapenet.py: the evaluation script for reflectional symmetry on shapenet dataset
      • evaluation/eval_ref_ycb.py: the evaluation script for reflectional symmetry on ycb dataset
      • evaluation/eval_ref_scannet.py: the evaluation script for reflectional symmetry on scannet dataset
      • evaluation/eval_rot_shapenet.py: the evaluation script for rotational symmetry on shapenet dataset
      • evaluation/eval_rot_ycb.py: the evaluation script for rotational symmetry on ycb dataset
      • evaluation/eval_rot_scannet.py: the evaluation script for rotational symmetry on scannet dataset
  • lib: the core Python library for networks and loss
    • lib/loss.py: symmetrynet loss caculation for both reflectional and rotational symmetries,the loss items are listed at the end of the text
    • lib/network.py: network architecture
    • lib/tools.py: functions for the operation of rotation and reflection
    • lib/verification.py: verification of the rotational and reflectional symmetries
  • datasets: the dataloader and training/testing lists
    • datasets/shapenet/dataset.py: the training dataloader for shapnet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for shapnet dataset
      • datasets/shapenet/dataset_config/*.txt: training and testing splits for shapenet dataset, the testing splits includ holdout view/instance/category
    • datasets/ycb/dataset.py: the training dataloader for ycb dataset
    • datasets/ycb/dataset_eval.py: the evaluation dataloader for ycb dataset
      • datasets/ycb/dataset_config/*.txt: training and testing splits for shapenet dataset,the training/testing splits fallow the ycb defult settings
    • datasets/shapenet/dataset.py: the training dataloader for scannet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for scannet dataset
      • datasets/scannet/dataset_config/*.txt: training and testing splits for scannet dataset,the testing splits includ holdout view/scene

Environments

pytorch>=0.4.1 python >=3.6

Datasets

  • ShapeNet dataset

    • shapenetcore: this folder saves the models and their ground truth symmetries for each instance
    • rendered_data: this folder saves the rgbd images that we rendered for each instance, including their ground truth pose and camera intrinsic matrix, etc.
    • name_list.txt: this file saves the correspondence between the name of instances and their ID in this project(the names are too long to identify)
  • YCB dataset

    • models: this folder saves the ground truth model symmetry for each instance
    • data: this folder saves the rgbd videos and the ground truth poses and camera information
    • classes.txt: this file saves the correspondence between the name of YCB objects and their *.xyz models
    • symmetries.txt: this file saves all the ground truth symmetries for ycb object models

Training

To train the network with the default parameter on shapenet dataset, run

python tools/train_shapenet.py --dataset_root= your/folder/to/shapnet/dataset

To train the network with the default parameter on ycb dataset, run

python tools/train_ycb.py --dataset_root= your/folder/to/ycb/dataset

To train the network with the default parameter on scannet dataset, run

python tools/train_scannet.py --dataset_root= your/folder/to/scannet/dataset

Evaluation

To evaluate the model with our metric on shapenet, for reflectional symmetry, run

python tools/evaluation/eval_ref_shapenet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_shapenet.py

To evaluate the model with our metric on ycb, for reflectional symmetry, run

python tools/evaluation/eval_ref_ycb.py

for rotational symmetry, run

python tools/evaluation/eval_rot_ycb.py

To evaluate the model with our metric on scannet, for reflectional symmetry, run

python tools/evaluation/eval_ref_scannet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_scannet.py

Pretrained model & data download

The pretrained models and data can be found at here (dropbox) and here (baidu yunpan, password: symm).

[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022