Explainable Zero-Shot Topic Extraction

Related tags

Deep LearningZeSTE
Overview

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph

This repository contains the code for reproducing the results reported in the paper "Explainable Zero-Shot Topic Extraction with Common-Sense Knowledge Graph" (pdf) at the LDK 2021 Conference.

A user-friendly demo is available at: http://zeste.tools.eurecom.fr/

ZeSTE

Based on ConceptNet's common sense knowledge graph and embeddings, ZeSTE generates explainable predictions for a document topical category (e.g. politics, sports, video_games ..) without reliance on training data. The following is a high-level illustration of the approach:

API

ZeSTE can also be accessed via a RESTful API for easy deployment and use. For further information, please refer to the documentation: https://zeste.tools.eurecom.fr/doc

Dependencies

Before running any code in this repo, please install the following dependencies:

  • numpy
  • pandas
  • matplotlib
  • nltk
  • sklearn
  • tqdm
  • gensim

Code Overview

This repo is organized as follows:

  • generate_cache.py: this script processes the raw ConceptNet dump to produce cached files for each node in ConceptNet to accelerate the label neighborhood generation. It also transforms ConceptNet Numberbatch text file into a Gensim word embedding that we pickle for quick loading.
  • zeste.py: this is the main script for evaluation. It takes as argument the dataset to process as well as model configuration parameters such as neighborhood depth (see below). The results (classification report, confusion matrix, and classification metrics) are persisted into text files.
  • util.py: contains the functions that are used in zeste.py
  • label_mappings: contains the tab-separated mappings for the studied datasets.

Reproducing Results

1. Downloads

The two following files need to be downloaded to bypass the use of ConceptNet's web API: the dump of ConceptNet triplets, and the ConceptNet Numberbatch pre-computed word embeddings. You can download them from ConceptNet's and Numberbatch's repos, respectively.

# wget https://s3.amazonaws.com/conceptnet/downloads/2019/edges/conceptnet-assertions-5.7.0.csv.gz
# wget https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-19.08.txt.gz
# gzip -d conceptnet-assertions-5.7.0.csv.gz
# gzip -d numberbatch-19.08.txt.gz

2. generate_cache.py

This script takes as input the two just-downloaded files and the cache path to where precomputed 1-hop label neighborhoods will be saved. This can take up to 7.2G of storage space.

usage: generate_cache.py [-h] [-cnp CONCEPTNET_ASSERTIONS_PATH] [-nbp CONCEPTNET_NUMBERBATCH_PATH] [-zcp ZESTE_CACHE_PATH]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cnp CONCEPTNET_ASSERTIONS_PATH, --conceptnet_assertions_path CONCEPTNET_ASSERTIONS_PATH
                        Path to CSV file containing ConceptNet assertions dump
  -nbp CONCEPTNET_NUMBERBATCH_PATH, --conceptnet_numberbatch_path CONCEPTNET_NUMBERBATCH_PATH
                        Path to W2V file for ConceptNet Numberbatch
  -zcp ZESTE_CACHE_PATH, --zeste_cache_path ZESTE_CACHE_PATH
                        Path to the repository where the generated files will be saved

3. zeste.py

This script uses the precomputed 1-hop label neighborhoods to recursively generate label neighborhoods of any given depth (-d). It takes also as parameters the path to the dataset CSV file (which should have two columns: text and label). The rest of the arguments are for model experimentation.

usage: zeste.py [-h] [-cp CACHE_PATH] [-pp PREFETCH_PATH] [-nb NUMBERBATCH_PATH] [-dp DATASET_PATH] [-lm LABELS_MAPPING] [-rp RESULTS_PATH]
                [-d DEPTH] [-f FILTER] [-s {simple,compound,depth,harmonized}] [-ar ALLOWED_RELS]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cp CACHE_PATH, --cache_path CACHE_PATH
                        Path to where the 1-hop word neighborhoods are cached
  -pp PREFETCH_PATH, --prefetch_path PREFETCH_PATH
                        Path to where the precomputed n-hop neighborhoods are cached
  -nb NUMBERBATCH_PATH, --numberbatch_path NUMBERBATCH_PATH
                        Path to the pickled Numberbatch
  -dp DATASET_PATH, --dataset_path DATASET_PATH
                        Path to the dataset to process
  -lm LABELS_MAPPING, --labels_mapping LABELS_MAPPING
                        Path to the mapping between the dataset labels and ZeSTE labels (multiword labels are comma-separated)
  -rp RESULTS_PATH, --results_path RESULTS_PATH
                        Path to the directory where to store the results
  -d DEPTH, --depth DEPTH
                        How many hops to generate the neighborhoods
  -f FILTER, --filter FILTER
                        Filtering method: top[N], top[P]%, thresh[T], all
  -s {simple,compound,depth,harmonized}, --similarity {simple,compound,depth,harmonized}
  -ar ALLOWED_RELS, --allowed_rels ALLOWED_RELS
                        Which relationships to use (comma-separated or all)

Cite this work

@InProceedings{harrando_et_al_zeste_2021,
  author ={Harrando, Ismail and Troncy, Rapha\"{e}l},
  title ={{Explainable Zero-Shot Topic Extraction Using a Common-Sense Knowledge Graph}},
  booktitle ={3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages ={17:1--17:15},
  year ={2021},
  volume ={93},
  publisher ={Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  URL ={https://drops.dagstuhl.de/opus/volltexte/2021/14553},
  URN ={urn:nbn:de:0030-drops-145532},
  doi ={10.4230/OASIcs.LDK.2021.17},
}
Owner
D2K Lab
Data to Knowledge Virtual Lab (LINKS Foundation - EURECOM)
D2K Lab
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022