Explainable Zero-Shot Topic Extraction

Related tags

Deep LearningZeSTE
Overview

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph

This repository contains the code for reproducing the results reported in the paper "Explainable Zero-Shot Topic Extraction with Common-Sense Knowledge Graph" (pdf) at the LDK 2021 Conference.

A user-friendly demo is available at: http://zeste.tools.eurecom.fr/

ZeSTE

Based on ConceptNet's common sense knowledge graph and embeddings, ZeSTE generates explainable predictions for a document topical category (e.g. politics, sports, video_games ..) without reliance on training data. The following is a high-level illustration of the approach:

API

ZeSTE can also be accessed via a RESTful API for easy deployment and use. For further information, please refer to the documentation: https://zeste.tools.eurecom.fr/doc

Dependencies

Before running any code in this repo, please install the following dependencies:

  • numpy
  • pandas
  • matplotlib
  • nltk
  • sklearn
  • tqdm
  • gensim

Code Overview

This repo is organized as follows:

  • generate_cache.py: this script processes the raw ConceptNet dump to produce cached files for each node in ConceptNet to accelerate the label neighborhood generation. It also transforms ConceptNet Numberbatch text file into a Gensim word embedding that we pickle for quick loading.
  • zeste.py: this is the main script for evaluation. It takes as argument the dataset to process as well as model configuration parameters such as neighborhood depth (see below). The results (classification report, confusion matrix, and classification metrics) are persisted into text files.
  • util.py: contains the functions that are used in zeste.py
  • label_mappings: contains the tab-separated mappings for the studied datasets.

Reproducing Results

1. Downloads

The two following files need to be downloaded to bypass the use of ConceptNet's web API: the dump of ConceptNet triplets, and the ConceptNet Numberbatch pre-computed word embeddings. You can download them from ConceptNet's and Numberbatch's repos, respectively.

# wget https://s3.amazonaws.com/conceptnet/downloads/2019/edges/conceptnet-assertions-5.7.0.csv.gz
# wget https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-19.08.txt.gz
# gzip -d conceptnet-assertions-5.7.0.csv.gz
# gzip -d numberbatch-19.08.txt.gz

2. generate_cache.py

This script takes as input the two just-downloaded files and the cache path to where precomputed 1-hop label neighborhoods will be saved. This can take up to 7.2G of storage space.

usage: generate_cache.py [-h] [-cnp CONCEPTNET_ASSERTIONS_PATH] [-nbp CONCEPTNET_NUMBERBATCH_PATH] [-zcp ZESTE_CACHE_PATH]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cnp CONCEPTNET_ASSERTIONS_PATH, --conceptnet_assertions_path CONCEPTNET_ASSERTIONS_PATH
                        Path to CSV file containing ConceptNet assertions dump
  -nbp CONCEPTNET_NUMBERBATCH_PATH, --conceptnet_numberbatch_path CONCEPTNET_NUMBERBATCH_PATH
                        Path to W2V file for ConceptNet Numberbatch
  -zcp ZESTE_CACHE_PATH, --zeste_cache_path ZESTE_CACHE_PATH
                        Path to the repository where the generated files will be saved

3. zeste.py

This script uses the precomputed 1-hop label neighborhoods to recursively generate label neighborhoods of any given depth (-d). It takes also as parameters the path to the dataset CSV file (which should have two columns: text and label). The rest of the arguments are for model experimentation.

usage: zeste.py [-h] [-cp CACHE_PATH] [-pp PREFETCH_PATH] [-nb NUMBERBATCH_PATH] [-dp DATASET_PATH] [-lm LABELS_MAPPING] [-rp RESULTS_PATH]
                [-d DEPTH] [-f FILTER] [-s {simple,compound,depth,harmonized}] [-ar ALLOWED_RELS]

Zero-Shot Topic Extraction

optional arguments:
  -h, --help            show this help message and exit
  -cp CACHE_PATH, --cache_path CACHE_PATH
                        Path to where the 1-hop word neighborhoods are cached
  -pp PREFETCH_PATH, --prefetch_path PREFETCH_PATH
                        Path to where the precomputed n-hop neighborhoods are cached
  -nb NUMBERBATCH_PATH, --numberbatch_path NUMBERBATCH_PATH
                        Path to the pickled Numberbatch
  -dp DATASET_PATH, --dataset_path DATASET_PATH
                        Path to the dataset to process
  -lm LABELS_MAPPING, --labels_mapping LABELS_MAPPING
                        Path to the mapping between the dataset labels and ZeSTE labels (multiword labels are comma-separated)
  -rp RESULTS_PATH, --results_path RESULTS_PATH
                        Path to the directory where to store the results
  -d DEPTH, --depth DEPTH
                        How many hops to generate the neighborhoods
  -f FILTER, --filter FILTER
                        Filtering method: top[N], top[P]%, thresh[T], all
  -s {simple,compound,depth,harmonized}, --similarity {simple,compound,depth,harmonized}
  -ar ALLOWED_RELS, --allowed_rels ALLOWED_RELS
                        Which relationships to use (comma-separated or all)

Cite this work

@InProceedings{harrando_et_al_zeste_2021,
  author ={Harrando, Ismail and Troncy, Rapha\"{e}l},
  title ={{Explainable Zero-Shot Topic Extraction Using a Common-Sense Knowledge Graph}},
  booktitle ={3rd Conference on Language, Data and Knowledge (LDK 2021)},
  pages ={17:1--17:15},
  year ={2021},
  volume ={93},
  publisher ={Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  URL ={https://drops.dagstuhl.de/opus/volltexte/2021/14553},
  URN ={urn:nbn:de:0030-drops-145532},
  doi ={10.4230/OASIcs.LDK.2021.17},
}
Owner
D2K Lab
Data to Knowledge Virtual Lab (LINKS Foundation - EURECOM)
D2K Lab
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022