A collection of Google research projects related to Federated Learning and Federated Analytics.

Overview

Federated Research

Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning is an approach to machine learning where a shared global model is trained across many participating clients that keep their training data locally. Federated analytics is the practice of applying data science methods to the analysis of raw data that is stored locally on users’ devices.

Many of the projects contained in this repository use TensorFlow Federated (TFF), an open-source framework for machine learning and other computations on decentralized data. For an overview and introduction to TFF, please see the list of tutorials. For information on using TFF for research, see TFF for research.

Recommended Usage

The main purpose of this repository is for reproducing experimental results in related papers. None of the projects (or subfolders) here is intended to be a resusable framework or package.

  • The recommended usage for this repository is to git clone and follow the instruction in each indedpendent project to run the code, usually with bazel.

There is a special module utils/ that is widely used as a dependency for projects in this repository. Some of the functions in utils/ are in the process of upstreaming to the TFF package. However, utils/ is not promised to be a stable API and the code may change in any time.

  • The recommended usage for utils/ is to fork the necessary piece of code for your own research projects.
  • If you find utils/ and maybe other projects helpful as a module that your projects want to depend on (and you accept the risk of depending on potentially unstable and unsupported code), you can use git submodule and add the module to your python path. See this example.

Contributing

This repository contains Google-affiliated research projects related to federated learning and analytics. If you are working with Google collaborators and would like to feature your research project here, please review the contribution guidelines for coding style, best practices, etc.

Pull Requests

We currently do not accept pull requests for this repository. If you have feature requests or encounter a bug, please file an issue to the project owners.

Issues

Please use GitHub issues to communicate with project owners for requests and bugs. Add [project/folder name] in the issue title so that we can easily find the best person to respond.

Questions

If you have questions related to TensorFlow Federated, please direct your questions to Stack Overflow using the tensorflow-federated tag.

If you would like more information on federated learning, please see the following introduction to federated learning. For a more in-depth discussion of recent progress in federated learning and open problems, see Advances and Open Problems in Federated Learning.

Owner
Google Research
Google Research
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023