[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Overview

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021)

Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao

  • This repository provides code for paper "Full-Duplex Strategy for Video Object Segmentation" accepted by the ICCV-2021 conference (arXiv Version / 中译版本).

  • This project is under construction. If you have any questions about our paper or bugs in our git project, feel free to contact me.

  • If you like our FSNet for your personal research, please cite this paper (BibTeX).

1. News

  • [2021/08/24] Upload the training script for video object segmentation.
  • [2021/08/22] Upload the pre-trained snapshot and the pre-computed results on U-VOS and V-SOD tasks.
  • [2021/08/20] Release inference code, evaluation code (VSOD).
  • [2021/07/20] Create Github page.

2. Introduction

Why?

Appearance and motion are two important sources of information in video object segmentation (VOS). Previous methods mainly focus on using simplex solutions, lowering the upper bound of feature collaboration among and across these two cues.


Figure 1: Visual comparison between the simplex (i.e., (a) appearance-refined motion and (b) motion-refined appear- ance) and our full-duplex strategy. In contrast, our FS- Net offers a collaborative way to leverage the appearance and motion cues under the mutual restraint of full-duplex strategy, thus providing more accurate structure details and alleviating the short-term feature drifting issue.

What?

In this paper, we study a novel framework, termed the FSNet (Full-duplex Strategy Network), which designs a relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding subspaces. Furthermore, the bidirectional purification module (BPM) is introduced to update the inconsistent features between the spatial-temporal embeddings, effectively improving the model's robustness.


Figure 2: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.

How?

By considering the mutual restraint within the full-duplex strategy, our FSNet performs the cross-modal feature-passing (i.e., transmission and receiving) simultaneously before the fusion and decoding stage, making it robust to various challenging scenarios (e.g., motion blur, occlusion) in VOS. Extensive experiments on five popular benchmarks (i.e., DAVIS16, FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.


Figure 3: Qualitative results on five datasets, including DAVIS16, MCL, FBMS, SegTrack-V2, and DAVSOD19.

3. Usage

How to Inference?

  • Download the test dataset from Baidu Driver (PSW: aaw8) or Google Driver and save it at ./dataset/*.

  • Install necessary libraries: PyTorch 1.1+, scipy 1.2.2, PIL

  • Download the pre-trained weights from Baidu Driver (psw: 36lm) or Google Driver. Saving the pre-trained weights at ./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth

  • Just run python inference.py to generate the segmentation results.

  • About the post-processing technique DenseCRF we used in the original paper, you can find it here: DSS-CRF.

How to train our model from scratch?

Download the train dataset from Baidu Driver (PSW: u01t) or Google Driver Set1/Google Driver Set2 and save it at ./dataset/*. Our training pipeline consists of three steps:

  • First, train the model using the combination of static SOD dataset (i.e., DUTS) with 12,926 samples and U-VOS datasets (i.e., DAVIS16 & FBMS) with 2,373 samples.

    • Set --train_type='pretrain_rgb' and run python train.py in terminal
  • Second, train the model using the optical-flow map of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='pretrain_flow' and run python train.py in terminal
  • Third, train the model using the pair of frame and optical flow of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='finetune' and run python train.py in terminal

4. Benchmark

Unsupervised/Zero-shot Video Object Segmentation (U/Z-VOS) task

NOTE: In the U-VOS, all the prediction results are strictly binary. We only adopt the naive binarization algorithm (i.e., threshold=0.5) in our experiments.

  • Quantitative results (NOTE: The following results have slight improvement compared with the reported results in our conference paper):

    mean-J recall-J decay-J mean-F recall-F decay-F T
    FSNet (w/ CRF) 0.834 0.945 0.032 0.831 0.902 0.026 0.213
    FSNet (w/o CRF) 0.823 0.943 0.033 0.833 0.919 0.028 0.213
  • Pre-Computed Results: Please download the prediction results of FSNet, refer to Baidu Driver (psw: ojsl) or Google Driver.

  • Evaluation Toolbox: We use the standard evaluation toolbox from DAVIS16. (Note that all the pre-computed segmentations are downloaded from this link).

Video Salient Object Detection (V-SOD) task

NOTE: In the V-SOD, all the prediction results are non-binary.

4. Citation

@inproceedings{ji2021FSNet,
  title={Full-Duplex Strategy for Video Object Segmentation},
  author={Ji, Ge-Peng and Fu, Keren and Wu, Zhe and Fan, Deng-Ping and Shen, Jianbing and Shao, Ling},
  booktitle={IEEE ICCV},
  year={2021}
}

5. Acknowledgements

Many thanks to my collaborator Ph.D. Zhe Wu, who provides excellent work SCRN and design inspirations.

Owner
Daniel-Ji
Computer Vision & Medical Imaging
Daniel-Ji
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022