[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Overview

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021)

Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao

  • This repository provides code for paper "Full-Duplex Strategy for Video Object Segmentation" accepted by the ICCV-2021 conference (arXiv Version / 中译版本).

  • This project is under construction. If you have any questions about our paper or bugs in our git project, feel free to contact me.

  • If you like our FSNet for your personal research, please cite this paper (BibTeX).

1. News

  • [2021/08/24] Upload the training script for video object segmentation.
  • [2021/08/22] Upload the pre-trained snapshot and the pre-computed results on U-VOS and V-SOD tasks.
  • [2021/08/20] Release inference code, evaluation code (VSOD).
  • [2021/07/20] Create Github page.

2. Introduction

Why?

Appearance and motion are two important sources of information in video object segmentation (VOS). Previous methods mainly focus on using simplex solutions, lowering the upper bound of feature collaboration among and across these two cues.


Figure 1: Visual comparison between the simplex (i.e., (a) appearance-refined motion and (b) motion-refined appear- ance) and our full-duplex strategy. In contrast, our FS- Net offers a collaborative way to leverage the appearance and motion cues under the mutual restraint of full-duplex strategy, thus providing more accurate structure details and alleviating the short-term feature drifting issue.

What?

In this paper, we study a novel framework, termed the FSNet (Full-duplex Strategy Network), which designs a relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding subspaces. Furthermore, the bidirectional purification module (BPM) is introduced to update the inconsistent features between the spatial-temporal embeddings, effectively improving the model's robustness.


Figure 2: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.

How?

By considering the mutual restraint within the full-duplex strategy, our FSNet performs the cross-modal feature-passing (i.e., transmission and receiving) simultaneously before the fusion and decoding stage, making it robust to various challenging scenarios (e.g., motion blur, occlusion) in VOS. Extensive experiments on five popular benchmarks (i.e., DAVIS16, FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.


Figure 3: Qualitative results on five datasets, including DAVIS16, MCL, FBMS, SegTrack-V2, and DAVSOD19.

3. Usage

How to Inference?

  • Download the test dataset from Baidu Driver (PSW: aaw8) or Google Driver and save it at ./dataset/*.

  • Install necessary libraries: PyTorch 1.1+, scipy 1.2.2, PIL

  • Download the pre-trained weights from Baidu Driver (psw: 36lm) or Google Driver. Saving the pre-trained weights at ./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth

  • Just run python inference.py to generate the segmentation results.

  • About the post-processing technique DenseCRF we used in the original paper, you can find it here: DSS-CRF.

How to train our model from scratch?

Download the train dataset from Baidu Driver (PSW: u01t) or Google Driver Set1/Google Driver Set2 and save it at ./dataset/*. Our training pipeline consists of three steps:

  • First, train the model using the combination of static SOD dataset (i.e., DUTS) with 12,926 samples and U-VOS datasets (i.e., DAVIS16 & FBMS) with 2,373 samples.

    • Set --train_type='pretrain_rgb' and run python train.py in terminal
  • Second, train the model using the optical-flow map of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='pretrain_flow' and run python train.py in terminal
  • Third, train the model using the pair of frame and optical flow of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='finetune' and run python train.py in terminal

4. Benchmark

Unsupervised/Zero-shot Video Object Segmentation (U/Z-VOS) task

NOTE: In the U-VOS, all the prediction results are strictly binary. We only adopt the naive binarization algorithm (i.e., threshold=0.5) in our experiments.

  • Quantitative results (NOTE: The following results have slight improvement compared with the reported results in our conference paper):

    mean-J recall-J decay-J mean-F recall-F decay-F T
    FSNet (w/ CRF) 0.834 0.945 0.032 0.831 0.902 0.026 0.213
    FSNet (w/o CRF) 0.823 0.943 0.033 0.833 0.919 0.028 0.213
  • Pre-Computed Results: Please download the prediction results of FSNet, refer to Baidu Driver (psw: ojsl) or Google Driver.

  • Evaluation Toolbox: We use the standard evaluation toolbox from DAVIS16. (Note that all the pre-computed segmentations are downloaded from this link).

Video Salient Object Detection (V-SOD) task

NOTE: In the V-SOD, all the prediction results are non-binary.

4. Citation

@inproceedings{ji2021FSNet,
  title={Full-Duplex Strategy for Video Object Segmentation},
  author={Ji, Ge-Peng and Fu, Keren and Wu, Zhe and Fan, Deng-Ping and Shen, Jianbing and Shao, Ling},
  booktitle={IEEE ICCV},
  year={2021}
}

5. Acknowledgements

Many thanks to my collaborator Ph.D. Zhe Wu, who provides excellent work SCRN and design inspirations.

Owner
Daniel-Ji
Computer Vision & Medical Imaging
Daniel-Ji
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022