[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Overview

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021)

Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao

  • This repository provides code for paper "Full-Duplex Strategy for Video Object Segmentation" accepted by the ICCV-2021 conference (arXiv Version / 中译版本).

  • This project is under construction. If you have any questions about our paper or bugs in our git project, feel free to contact me.

  • If you like our FSNet for your personal research, please cite this paper (BibTeX).

1. News

  • [2021/08/24] Upload the training script for video object segmentation.
  • [2021/08/22] Upload the pre-trained snapshot and the pre-computed results on U-VOS and V-SOD tasks.
  • [2021/08/20] Release inference code, evaluation code (VSOD).
  • [2021/07/20] Create Github page.

2. Introduction

Why?

Appearance and motion are two important sources of information in video object segmentation (VOS). Previous methods mainly focus on using simplex solutions, lowering the upper bound of feature collaboration among and across these two cues.


Figure 1: Visual comparison between the simplex (i.e., (a) appearance-refined motion and (b) motion-refined appear- ance) and our full-duplex strategy. In contrast, our FS- Net offers a collaborative way to leverage the appearance and motion cues under the mutual restraint of full-duplex strategy, thus providing more accurate structure details and alleviating the short-term feature drifting issue.

What?

In this paper, we study a novel framework, termed the FSNet (Full-duplex Strategy Network), which designs a relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding subspaces. Furthermore, the bidirectional purification module (BPM) is introduced to update the inconsistent features between the spatial-temporal embeddings, effectively improving the model's robustness.


Figure 2: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.

How?

By considering the mutual restraint within the full-duplex strategy, our FSNet performs the cross-modal feature-passing (i.e., transmission and receiving) simultaneously before the fusion and decoding stage, making it robust to various challenging scenarios (e.g., motion blur, occlusion) in VOS. Extensive experiments on five popular benchmarks (i.e., DAVIS16, FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.


Figure 3: Qualitative results on five datasets, including DAVIS16, MCL, FBMS, SegTrack-V2, and DAVSOD19.

3. Usage

How to Inference?

  • Download the test dataset from Baidu Driver (PSW: aaw8) or Google Driver and save it at ./dataset/*.

  • Install necessary libraries: PyTorch 1.1+, scipy 1.2.2, PIL

  • Download the pre-trained weights from Baidu Driver (psw: 36lm) or Google Driver. Saving the pre-trained weights at ./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth

  • Just run python inference.py to generate the segmentation results.

  • About the post-processing technique DenseCRF we used in the original paper, you can find it here: DSS-CRF.

How to train our model from scratch?

Download the train dataset from Baidu Driver (PSW: u01t) or Google Driver Set1/Google Driver Set2 and save it at ./dataset/*. Our training pipeline consists of three steps:

  • First, train the model using the combination of static SOD dataset (i.e., DUTS) with 12,926 samples and U-VOS datasets (i.e., DAVIS16 & FBMS) with 2,373 samples.

    • Set --train_type='pretrain_rgb' and run python train.py in terminal
  • Second, train the model using the optical-flow map of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='pretrain_flow' and run python train.py in terminal
  • Third, train the model using the pair of frame and optical flow of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='finetune' and run python train.py in terminal

4. Benchmark

Unsupervised/Zero-shot Video Object Segmentation (U/Z-VOS) task

NOTE: In the U-VOS, all the prediction results are strictly binary. We only adopt the naive binarization algorithm (i.e., threshold=0.5) in our experiments.

  • Quantitative results (NOTE: The following results have slight improvement compared with the reported results in our conference paper):

    mean-J recall-J decay-J mean-F recall-F decay-F T
    FSNet (w/ CRF) 0.834 0.945 0.032 0.831 0.902 0.026 0.213
    FSNet (w/o CRF) 0.823 0.943 0.033 0.833 0.919 0.028 0.213
  • Pre-Computed Results: Please download the prediction results of FSNet, refer to Baidu Driver (psw: ojsl) or Google Driver.

  • Evaluation Toolbox: We use the standard evaluation toolbox from DAVIS16. (Note that all the pre-computed segmentations are downloaded from this link).

Video Salient Object Detection (V-SOD) task

NOTE: In the V-SOD, all the prediction results are non-binary.

4. Citation

@inproceedings{ji2021FSNet,
  title={Full-Duplex Strategy for Video Object Segmentation},
  author={Ji, Ge-Peng and Fu, Keren and Wu, Zhe and Fan, Deng-Ping and Shen, Jianbing and Shao, Ling},
  booktitle={IEEE ICCV},
  year={2021}
}

5. Acknowledgements

Many thanks to my collaborator Ph.D. Zhe Wu, who provides excellent work SCRN and design inspirations.

Owner
Daniel-Ji
Computer Vision & Medical Imaging
Daniel-Ji
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023