Hierarchical Time Series Forecasting with a familiar API

Overview

scikit-hts

Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work in the mobility space while working at Circ (acquired by Bird scooters).

My work on this is purely out of passion, so contributions are always welcomed. You can also buy me a coffee if you'd like:

ETH / BSC Address: 0xbF42b9c8F7B69D52b8b986AA4E0BAc6838Af6698
https://github.com/carlomazzaferro/scikit-hts/workflows/main%20workflow/badge.svg?branch=master Documentation Status Coverage Downloads/Month Slack

Overview

Building on the excellent work by Hyndman [1], we developed this package in order to provide a python implementation of general hierarchical time series modeling.

[1] Forecasting Principles and Practice. Rob J Hyndman and George Athanasopoulos. Monash University, Australia.

Note

STATUS: alpha. Active development, but breaking changes may come.

Features

  • Supported and tested on python 3.6, python 3.7 and python 3.8
  • Implementation of Bottom-Up, Top-Down, Middle-Out, Forecast Proportions, Average Historic Proportions, Proportions of Historic Averages and OLS revision methods
  • Support for representations of hierarchical and grouped time series
  • Support for a variety of underlying forecasting models, inlcuding: SARIMAX, ARIMA, Prophet, Holt-Winters
  • Scikit-learn-like API
  • Geo events handling functionality for geospatial data, including visualisation capabilities
  • Static typing for a nice developer experience
  • Distributed training & Dask integration: perform training and prediction in parallel or in a cluster with Dask

Examples

You can find code usages here: https://github.com/carlomazzaferro/scikit-hts-examples

Roadmap

  • More flexible underlying modeling support
    • [P] AR, ARIMAX, VARMAX, etc
    • [P] Bring-Your-Own-Model
    • [P] Different parameters for each of the models
  • Decoupling reconciliation methods from forecast fitting
    • [W] Enable to use the reconciliation methods with pre-fitted models
P: Planned
W: WIP

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Carlo Mazzaferro
Machine Learning infrastructure and related things
Carlo Mazzaferro
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023