This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

Overview

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv]

Overview

ActionCLIP

Content

Prerequisites

The code is built with following libraries:

  • PyTorch >= 1.8
  • wandb
  • RandAugment
  • pprint
  • tqdm
  • dotmap
  • yaml
  • csv

For video data pre-processing, you may need ffmpeg.

More detail information about libraries see INSTALL.md.

Data Preparation

We need to first extract videos into frames for fast reading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Kinetics, UCF101, HMDB51, Charades.

Updates

  • We now support single crop validation(including zero-shot) on Kinetics-400, UCF101 and HMDB51. The pretrained models see MODEL_ZOO.md for more information.
  • we now support the model-training on Kinetics-400, UCF101 and HMDB51 on 8, 16 and 32 frames. The model-training configs see configs/README.md for more information.
  • We now support the model-training on your own datasets. The detail information see configs/README.md.

Pretrained Models

Training video models is computationally expensive. Here we provide some of the pretrained models. We provide a large set of trained models in the ActionCLIP MODEL_ZOO.md.

Kinetics-400

We experiment ActionCLIP with different backbones(we choose Transf as our final visual prompt since it obtains the best results) and input frames configurations on k400. Here is a list of pre-trained models that we provide (see Table 6 of the paper).

model n-frame top1 Acc(single-crop) top5 Acc(single-crop) checkpoint
ViT-B/32 8 78.36% 94.25% link pwd:8hg2
ViT-B/16 8 81.09% 95.49% link
ViT-B/16 16 81.68% 95.87% link
ViT-B/16 32 82.32% 96.20% link pwd:v7nn

HMDB51 && UCF101

On HMDB51 and UCF101 datasets, the accuracy(k400 pretrained) is reported under the accurate setting.

HMDB51

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 76.2% link

UCF101

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 97.1% link

Testing

To test the downloaded pretrained models on Kinetics or HMDB51 or UCF101, you can run scripts/run_test.sh. For example:

# test
bash scripts/run_test.sh  ./configs/k400/k400_ft_tem.yaml

Zero-shot

We provide several examples to do zero-shot validation on kinetics-400, UCF101 and HMDB51.

  • To do zero-shot validation on Kinetics from CLIP pretrained models, you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/k400/k400_ft_zero_shot.yaml
  • To do zero-shot validation on UCF101 and HMDB51 from Kinetics pretrained models, you need first prepare the k400 pretrained model and then you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/hmdb51/hmdb_ft_zero_shot.yaml

Training

We provided several examples to train ActionCLIP with this repo:

  • To train on Kinetics from CLIP pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/k400/k400_ft_tem_test.yaml
  • To train on HMDB51 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/hmdb51/hmdb_ft.yaml
  • To train on UCF101 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/ucf101/ucf_ft.yaml

More training details, you can find in configs/README.md

Contributors

ActionCLIP is written and maintained by Mengmeng Wang and Jiazheng Xing.

Citing ActionCLIP

If you find ActionClip useful in your research, please use the following BibTex entry for citation.

@inproceedings{wang2022ActionCLIP,
  title={ActionCLIP: A New Paradigm for Video Action Recognition},
  author={Mengmeng Wang, Jiazheng Xing and Yong Liu},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
} 

Acknowledgments

Our code is based on CLIP and STM.

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Özlem Taşkın 0 Feb 23, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022