Code release for SLIP Self-supervision meets Language-Image Pre-training

Related tags

Deep LearningSLIP
Overview

SLIP: Self-supervision meets Language-Image Pre-training

SLIP framework

What you can find in this repo:

Results and Pre-trained Models

The following models are pre-trained on YFCC15M and evaluated on ImageNet-1K (ILSVRC2012).

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 32.7 59.3 78.2 url
SimCLR 25 - 58.1 79.9 url
SLIP 25 38.3 66.4 80.3 url
SLIP 50 39.3 67.6 80.7 url
SLIP 100 39.5 68.3 80.7 url

ViT-Base

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 37.6 66.5 80.5 url
SimCLR 25 - 64.0 82.5 url
SLIP 25 42.8 72.1 82.6 url
SLIP 50 44.1 73.0 82.9 url
SLIP 100 45.0 73.6 83.4 url

ViT-Large

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 40.4 70.5 81.0 url
SimCLR 25 - 66.7 84.0 url
SLIP 25 46.2 76.0 84.2 url
SLIP 50 47.4 75.8 84.7 url
SLIP 100 47.9 75.1 84.8 url

1. Setup

Install PyTorch and timm. The code has been tested with CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0.

1.1. YFCC15M Setup

Download the YFCC100M dataset. Our dataloader expects the following dataset directory structure with 100 folders containing 1000 zip archives of 1000 images each. The concatenation of the folder, archive, and file names is the index of the image (i.e. image 12345678 is stored as 678.jpg within 12/345.zip):

/path/to/yfcc100m/
├── images/
│   ├── 00/
│   │   └── 000.zip
│   │   │   ├── 000.jpg
│   │   │   │   ...
│   │   │   └── 999.jpg
│   │   ...
│   │   └── 999.zip
│   ...
│   └── 99/
...

Prepare the YFCC15M subset metadata pickle:

  1. Download and compile a list of downloaded images to flickr_unique_ids.npy (ours)
  2. Download OpenAI's list of captioned YFCC100M images according to instructions here
  3. Run python make_dataset.py to create the yfcc15m.pkl metadata pickle

When pre-training with YFCC15M, set --dataset yfcc15m --root /path/to/yfcc100m --metadata /path/to/yfcc15m.pkl.

1.2. COCO Captions Setup

Download and unzip the 2017 Train images and annotations. When pre-training on COCO, set --dataset coco --root /path/to/coco --metadata /path/to/captions_train2017.json.

1.3. Conceptual Captions Setup

CC3M and CC12M are published as tsv files listing original image urls and processed captions. Download images and collect the captions of all available images (many will be missing due to broken links) into cc3m.npy and cc12m.npy.

For CC3M our dataloader expects cc3m.npy to contain a NumPy array of dicts in the following format:

{
  'image_id': 1510438788,  # local file path relative to root
  'captions': ['large field with pink tulips on a clear sunny summer day with a blue sky']
}

For CC12M our dataloader expects cc12m.npy to contain a NumPy array of dicts in the following format:

{
  'image_name': '0.jpg',  # local file path relative to root
  'image_id': 0,
  'captions': ['Metal Design Within Reach Ivory Slipper Chairs - a Pair For Sale - Image 7 of 10']
}

When pre-training on CC3M set --dataset cc3m --root /path/to/cc3m --metadata /path/to/cc3m.npy, and whe pre-training on CC12M set --dataset cc12m --root /path/to/cc12m --metadata /path/to/cc12m.npy.

1.4. Downstream Dataset Setup

Zero-shot (in main.py and eval_zeroshot.py) and linear (in main_linear.py) evaluations read dataset paths from dataset_catalog.json. Zero-shot evaluations read CLIP's class labels and caption templates from labels.json and templates.json. If just pre-training models on YFCC15M, only the ImageNet path is required for model validation between training epochs. See Section 3 below on zero-shot transfer evaluation for dataset preparation details.

2. Pre-training

We use the following pre-training recipes for SLIP, CLIP, and SimCLR. See main.py for the full list of default arguments. We use the same lr and wd settings for all model sizes within the same training framework, and different model sizes can be selected by passing in different strings to the --model argument such as SLIP_VITS16 or SLIP_VITL16.

In our workflow we use submitit, which interfaces nicely with Slurm. For local training with the torchrun utility (supersedes torch.distributed.launch), replace python run_with_submitit.py with torchrun --nproc_per_node=8 main.py. Local multi-node training with torchrun should also be possible.

We train most of our models on 8x 8-gpu nodes, but training with fewer gpus is possible by reducing the batch size and setting the --update-freq argument above 1 to enable gradient accumulation. Note that gradient accumulation will increase the variance of minibatch statistics and alter the training dynamics of batchnorm, which is used in SLIP and SimCLR.

SLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SLIP_VITB16 \
  --lr 3e-3 --wd 0.1

CLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model CLIP_VITB16 \
  --lr 5e-4 --wd 0.5

SimCLR ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SIMCLR_VITB16 \
  --ssl-mlp-dim 4096 --ssl-emb-dim 256 --ssl-temp 0.1 \
  --lr 3.2e-3 --wd 0.1 

Some important arguments:

--dataset: pre-training dataset name. choices include yfcc15m, cc12m, cc3m, coco.

--root: path to dataset root

--metadata: path to metadata file (see section 1 for details)

--ssl-mlp-dim: hidden dim of SimCLR mlp projection head

--ssl-emb-dim: output embed dim of SimCLR mlp projection head

--ssl-scale: loss scale for SimCLR objective

--ssl-temp: softmax temperature for SimCLR objective

--batch-size: number of samples per-device/per-gpu

--lr-start: initial warmup lr

--lr-end: minimum final lr

--update-freq: optimizer update frequency, i.e. gradient accumulation steps

--disable-amp: disable mixed-precision training (requires more memory and compute)

3. Evaluation: Zero-shot Transfer

First, prepare additional downstream classification datasets:

  • MNIST, CIFAR-10/100, STL-10: Automatic download via torchvision datasets
  • HatefulMemes: Manual download from official website and sort images according to train.jsonl/dev.jsonl into train/dev folder
  • Rendered SST2, Country211: Manual download from CLIP repo
  • Other datasets: Use scripts from VISSL

Then set all dataset paths in dataset_catalog.json.

Evaluate zero-shot transfer to various classification benchmarks with eval_zeroshot.py, which reads labels and templates from labels.json/templates.json and dataset paths from dataset_catalog.json. Inference is performed with a single gpu. By default, the script iterates through all datasets in dataset_catalog.json and evaluates zero-shot in order. Evaluation can be limited to a subset of datasets by replacing for d in datasets: with for d in ['imagenet']: on line 78.

python eval_zeroshot.py --resume /path/to/checkpoint.pt

4. Evaluation: Linear Classification

We use a modified version of the MoCo v3 ImageNet linear classification script, main_linear.py. We use the same single node 8-gpu recipe for all model sizes. See main_linear.py for the full list of default arguments. As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_linear.py with torchrun --nproc_per_node=8 main_linear.py. This script reads the ImageNet dataset path from the dataset catalog (dataset_catalog.json), which must be set properly before training.

python run_with_submitit_linear.py  \
  --arch vit_base_patch16_224 --dataset imagenet \
  --pretrained /path/to/checkpoint.pt

To evaluate linear classification on other datasets, set --dataset to the corresponding dataset name listed in dataset_catalog.json.

5. Evaluation: End-to-End Finetuning

We use a modified version of the ImageNet finetuning script from BeiT. Our code has been tested with commit f8f3df8. We have removed the explicit torch, torchvision, and timm dependencies from beit_finetuning/requirements.txt, as they conflict with the versions used in our SLIP code (CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0). The fintuning code has been modified and tested to work with these versions.

5.1. Setup

To evaluate end-to-end finetuning on ImageNet, first clone the BeiT repo and checkout the correct commit:

git clone [email protected]:microsoft/unilm.git
cd unilm/beit
git checkout f8f3df8

Now copy over modified files from our beit_finetuning directory:

cp beit_finetuning/* unilm/beit
cd unilm/beit

Install pip dependencies and Nvidia Apex:

pip install -r requirements.txt
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.2. Commands

As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_finetune.py with torchrun --nproc_per_node=8 run_class_finetuning.py. We established finetuning recipes based on the BeiT recipes with some light additional hyperparameter tuning. We increase regularization with model size: ViT-S uses drop_path=0 and layer_decay=0.65, ViT-B uses drop_path=0.1 and layer_decay=0.65, and ViT-L uses drop_path=0.1 and layer_decay=0.75. Note the use of the --finetune argument instead of --resume.

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_small_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Base

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_base_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Large

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 50 --warmup_epochs 5 \
    --model beit_large_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.75 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{mu2021slip,
  author  = {Norman Mu and Alexander Kirillov and David Wagner and Saining Xie},
  title   = {SLIP: Self-supervision meets Language-Image Pre-training},
  journal = {arXiv preprint arXiv:2112.12750},
  year    = {2021},
}
Owner
Meta Research
Meta Research
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022