Code release for SLIP Self-supervision meets Language-Image Pre-training

Related tags

Deep LearningSLIP
Overview

SLIP: Self-supervision meets Language-Image Pre-training

SLIP framework

What you can find in this repo:

Results and Pre-trained Models

The following models are pre-trained on YFCC15M and evaluated on ImageNet-1K (ILSVRC2012).

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 32.7 59.3 78.2 url
SimCLR 25 - 58.1 79.9 url
SLIP 25 38.3 66.4 80.3 url
SLIP 50 39.3 67.6 80.7 url
SLIP 100 39.5 68.3 80.7 url

ViT-Base

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 37.6 66.5 80.5 url
SimCLR 25 - 64.0 82.5 url
SLIP 25 42.8 72.1 82.6 url
SLIP 50 44.1 73.0 82.9 url
SLIP 100 45.0 73.6 83.4 url

ViT-Large

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 40.4 70.5 81.0 url
SimCLR 25 - 66.7 84.0 url
SLIP 25 46.2 76.0 84.2 url
SLIP 50 47.4 75.8 84.7 url
SLIP 100 47.9 75.1 84.8 url

1. Setup

Install PyTorch and timm. The code has been tested with CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0.

1.1. YFCC15M Setup

Download the YFCC100M dataset. Our dataloader expects the following dataset directory structure with 100 folders containing 1000 zip archives of 1000 images each. The concatenation of the folder, archive, and file names is the index of the image (i.e. image 12345678 is stored as 678.jpg within 12/345.zip):

/path/to/yfcc100m/
├── images/
│   ├── 00/
│   │   └── 000.zip
│   │   │   ├── 000.jpg
│   │   │   │   ...
│   │   │   └── 999.jpg
│   │   ...
│   │   └── 999.zip
│   ...
│   └── 99/
...

Prepare the YFCC15M subset metadata pickle:

  1. Download and compile a list of downloaded images to flickr_unique_ids.npy (ours)
  2. Download OpenAI's list of captioned YFCC100M images according to instructions here
  3. Run python make_dataset.py to create the yfcc15m.pkl metadata pickle

When pre-training with YFCC15M, set --dataset yfcc15m --root /path/to/yfcc100m --metadata /path/to/yfcc15m.pkl.

1.2. COCO Captions Setup

Download and unzip the 2017 Train images and annotations. When pre-training on COCO, set --dataset coco --root /path/to/coco --metadata /path/to/captions_train2017.json.

1.3. Conceptual Captions Setup

CC3M and CC12M are published as tsv files listing original image urls and processed captions. Download images and collect the captions of all available images (many will be missing due to broken links) into cc3m.npy and cc12m.npy.

For CC3M our dataloader expects cc3m.npy to contain a NumPy array of dicts in the following format:

{
  'image_id': 1510438788,  # local file path relative to root
  'captions': ['large field with pink tulips on a clear sunny summer day with a blue sky']
}

For CC12M our dataloader expects cc12m.npy to contain a NumPy array of dicts in the following format:

{
  'image_name': '0.jpg',  # local file path relative to root
  'image_id': 0,
  'captions': ['Metal Design Within Reach Ivory Slipper Chairs - a Pair For Sale - Image 7 of 10']
}

When pre-training on CC3M set --dataset cc3m --root /path/to/cc3m --metadata /path/to/cc3m.npy, and whe pre-training on CC12M set --dataset cc12m --root /path/to/cc12m --metadata /path/to/cc12m.npy.

1.4. Downstream Dataset Setup

Zero-shot (in main.py and eval_zeroshot.py) and linear (in main_linear.py) evaluations read dataset paths from dataset_catalog.json. Zero-shot evaluations read CLIP's class labels and caption templates from labels.json and templates.json. If just pre-training models on YFCC15M, only the ImageNet path is required for model validation between training epochs. See Section 3 below on zero-shot transfer evaluation for dataset preparation details.

2. Pre-training

We use the following pre-training recipes for SLIP, CLIP, and SimCLR. See main.py for the full list of default arguments. We use the same lr and wd settings for all model sizes within the same training framework, and different model sizes can be selected by passing in different strings to the --model argument such as SLIP_VITS16 or SLIP_VITL16.

In our workflow we use submitit, which interfaces nicely with Slurm. For local training with the torchrun utility (supersedes torch.distributed.launch), replace python run_with_submitit.py with torchrun --nproc_per_node=8 main.py. Local multi-node training with torchrun should also be possible.

We train most of our models on 8x 8-gpu nodes, but training with fewer gpus is possible by reducing the batch size and setting the --update-freq argument above 1 to enable gradient accumulation. Note that gradient accumulation will increase the variance of minibatch statistics and alter the training dynamics of batchnorm, which is used in SLIP and SimCLR.

SLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SLIP_VITB16 \
  --lr 3e-3 --wd 0.1

CLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model CLIP_VITB16 \
  --lr 5e-4 --wd 0.5

SimCLR ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SIMCLR_VITB16 \
  --ssl-mlp-dim 4096 --ssl-emb-dim 256 --ssl-temp 0.1 \
  --lr 3.2e-3 --wd 0.1 

Some important arguments:

--dataset: pre-training dataset name. choices include yfcc15m, cc12m, cc3m, coco.

--root: path to dataset root

--metadata: path to metadata file (see section 1 for details)

--ssl-mlp-dim: hidden dim of SimCLR mlp projection head

--ssl-emb-dim: output embed dim of SimCLR mlp projection head

--ssl-scale: loss scale for SimCLR objective

--ssl-temp: softmax temperature for SimCLR objective

--batch-size: number of samples per-device/per-gpu

--lr-start: initial warmup lr

--lr-end: minimum final lr

--update-freq: optimizer update frequency, i.e. gradient accumulation steps

--disable-amp: disable mixed-precision training (requires more memory and compute)

3. Evaluation: Zero-shot Transfer

First, prepare additional downstream classification datasets:

  • MNIST, CIFAR-10/100, STL-10: Automatic download via torchvision datasets
  • HatefulMemes: Manual download from official website and sort images according to train.jsonl/dev.jsonl into train/dev folder
  • Rendered SST2, Country211: Manual download from CLIP repo
  • Other datasets: Use scripts from VISSL

Then set all dataset paths in dataset_catalog.json.

Evaluate zero-shot transfer to various classification benchmarks with eval_zeroshot.py, which reads labels and templates from labels.json/templates.json and dataset paths from dataset_catalog.json. Inference is performed with a single gpu. By default, the script iterates through all datasets in dataset_catalog.json and evaluates zero-shot in order. Evaluation can be limited to a subset of datasets by replacing for d in datasets: with for d in ['imagenet']: on line 78.

python eval_zeroshot.py --resume /path/to/checkpoint.pt

4. Evaluation: Linear Classification

We use a modified version of the MoCo v3 ImageNet linear classification script, main_linear.py. We use the same single node 8-gpu recipe for all model sizes. See main_linear.py for the full list of default arguments. As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_linear.py with torchrun --nproc_per_node=8 main_linear.py. This script reads the ImageNet dataset path from the dataset catalog (dataset_catalog.json), which must be set properly before training.

python run_with_submitit_linear.py  \
  --arch vit_base_patch16_224 --dataset imagenet \
  --pretrained /path/to/checkpoint.pt

To evaluate linear classification on other datasets, set --dataset to the corresponding dataset name listed in dataset_catalog.json.

5. Evaluation: End-to-End Finetuning

We use a modified version of the ImageNet finetuning script from BeiT. Our code has been tested with commit f8f3df8. We have removed the explicit torch, torchvision, and timm dependencies from beit_finetuning/requirements.txt, as they conflict with the versions used in our SLIP code (CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0). The fintuning code has been modified and tested to work with these versions.

5.1. Setup

To evaluate end-to-end finetuning on ImageNet, first clone the BeiT repo and checkout the correct commit:

git clone [email protected]:microsoft/unilm.git
cd unilm/beit
git checkout f8f3df8

Now copy over modified files from our beit_finetuning directory:

cp beit_finetuning/* unilm/beit
cd unilm/beit

Install pip dependencies and Nvidia Apex:

pip install -r requirements.txt
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.2. Commands

As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_finetune.py with torchrun --nproc_per_node=8 run_class_finetuning.py. We established finetuning recipes based on the BeiT recipes with some light additional hyperparameter tuning. We increase regularization with model size: ViT-S uses drop_path=0 and layer_decay=0.65, ViT-B uses drop_path=0.1 and layer_decay=0.65, and ViT-L uses drop_path=0.1 and layer_decay=0.75. Note the use of the --finetune argument instead of --resume.

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_small_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Base

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_base_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Large

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 50 --warmup_epochs 5 \
    --model beit_large_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.75 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{mu2021slip,
  author  = {Norman Mu and Alexander Kirillov and David Wagner and Saining Xie},
  title   = {SLIP: Self-supervision meets Language-Image Pre-training},
  journal = {arXiv preprint arXiv:2112.12750},
  year    = {2021},
}
Owner
Meta Research
Meta Research
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022