Code release for SLIP Self-supervision meets Language-Image Pre-training

Related tags

Deep LearningSLIP
Overview

SLIP: Self-supervision meets Language-Image Pre-training

SLIP framework

What you can find in this repo:

Results and Pre-trained Models

The following models are pre-trained on YFCC15M and evaluated on ImageNet-1K (ILSVRC2012).

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 32.7 59.3 78.2 url
SimCLR 25 - 58.1 79.9 url
SLIP 25 38.3 66.4 80.3 url
SLIP 50 39.3 67.6 80.7 url
SLIP 100 39.5 68.3 80.7 url

ViT-Base

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 37.6 66.5 80.5 url
SimCLR 25 - 64.0 82.5 url
SLIP 25 42.8 72.1 82.6 url
SLIP 50 44.1 73.0 82.9 url
SLIP 100 45.0 73.6 83.4 url

ViT-Large

Method Epochs 0-shot Linear Finetuned Weights
CLIP 25 40.4 70.5 81.0 url
SimCLR 25 - 66.7 84.0 url
SLIP 25 46.2 76.0 84.2 url
SLIP 50 47.4 75.8 84.7 url
SLIP 100 47.9 75.1 84.8 url

1. Setup

Install PyTorch and timm. The code has been tested with CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0.

1.1. YFCC15M Setup

Download the YFCC100M dataset. Our dataloader expects the following dataset directory structure with 100 folders containing 1000 zip archives of 1000 images each. The concatenation of the folder, archive, and file names is the index of the image (i.e. image 12345678 is stored as 678.jpg within 12/345.zip):

/path/to/yfcc100m/
├── images/
│   ├── 00/
│   │   └── 000.zip
│   │   │   ├── 000.jpg
│   │   │   │   ...
│   │   │   └── 999.jpg
│   │   ...
│   │   └── 999.zip
│   ...
│   └── 99/
...

Prepare the YFCC15M subset metadata pickle:

  1. Download and compile a list of downloaded images to flickr_unique_ids.npy (ours)
  2. Download OpenAI's list of captioned YFCC100M images according to instructions here
  3. Run python make_dataset.py to create the yfcc15m.pkl metadata pickle

When pre-training with YFCC15M, set --dataset yfcc15m --root /path/to/yfcc100m --metadata /path/to/yfcc15m.pkl.

1.2. COCO Captions Setup

Download and unzip the 2017 Train images and annotations. When pre-training on COCO, set --dataset coco --root /path/to/coco --metadata /path/to/captions_train2017.json.

1.3. Conceptual Captions Setup

CC3M and CC12M are published as tsv files listing original image urls and processed captions. Download images and collect the captions of all available images (many will be missing due to broken links) into cc3m.npy and cc12m.npy.

For CC3M our dataloader expects cc3m.npy to contain a NumPy array of dicts in the following format:

{
  'image_id': 1510438788,  # local file path relative to root
  'captions': ['large field with pink tulips on a clear sunny summer day with a blue sky']
}

For CC12M our dataloader expects cc12m.npy to contain a NumPy array of dicts in the following format:

{
  'image_name': '0.jpg',  # local file path relative to root
  'image_id': 0,
  'captions': ['Metal Design Within Reach Ivory Slipper Chairs - a Pair For Sale - Image 7 of 10']
}

When pre-training on CC3M set --dataset cc3m --root /path/to/cc3m --metadata /path/to/cc3m.npy, and whe pre-training on CC12M set --dataset cc12m --root /path/to/cc12m --metadata /path/to/cc12m.npy.

1.4. Downstream Dataset Setup

Zero-shot (in main.py and eval_zeroshot.py) and linear (in main_linear.py) evaluations read dataset paths from dataset_catalog.json. Zero-shot evaluations read CLIP's class labels and caption templates from labels.json and templates.json. If just pre-training models on YFCC15M, only the ImageNet path is required for model validation between training epochs. See Section 3 below on zero-shot transfer evaluation for dataset preparation details.

2. Pre-training

We use the following pre-training recipes for SLIP, CLIP, and SimCLR. See main.py for the full list of default arguments. We use the same lr and wd settings for all model sizes within the same training framework, and different model sizes can be selected by passing in different strings to the --model argument such as SLIP_VITS16 or SLIP_VITL16.

In our workflow we use submitit, which interfaces nicely with Slurm. For local training with the torchrun utility (supersedes torch.distributed.launch), replace python run_with_submitit.py with torchrun --nproc_per_node=8 main.py. Local multi-node training with torchrun should also be possible.

We train most of our models on 8x 8-gpu nodes, but training with fewer gpus is possible by reducing the batch size and setting the --update-freq argument above 1 to enable gradient accumulation. Note that gradient accumulation will increase the variance of minibatch statistics and alter the training dynamics of batchnorm, which is used in SLIP and SimCLR.

SLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SLIP_VITB16 \
  --lr 3e-3 --wd 0.1

CLIP ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model CLIP_VITB16 \
  --lr 5e-4 --wd 0.5

SimCLR ViT-Base with 8-nodes (batch size 4096)

python run_with_submitit.py \
  --root /path/to/yfcc100m \
  --model SIMCLR_VITB16 \
  --ssl-mlp-dim 4096 --ssl-emb-dim 256 --ssl-temp 0.1 \
  --lr 3.2e-3 --wd 0.1 

Some important arguments:

--dataset: pre-training dataset name. choices include yfcc15m, cc12m, cc3m, coco.

--root: path to dataset root

--metadata: path to metadata file (see section 1 for details)

--ssl-mlp-dim: hidden dim of SimCLR mlp projection head

--ssl-emb-dim: output embed dim of SimCLR mlp projection head

--ssl-scale: loss scale for SimCLR objective

--ssl-temp: softmax temperature for SimCLR objective

--batch-size: number of samples per-device/per-gpu

--lr-start: initial warmup lr

--lr-end: minimum final lr

--update-freq: optimizer update frequency, i.e. gradient accumulation steps

--disable-amp: disable mixed-precision training (requires more memory and compute)

3. Evaluation: Zero-shot Transfer

First, prepare additional downstream classification datasets:

  • MNIST, CIFAR-10/100, STL-10: Automatic download via torchvision datasets
  • HatefulMemes: Manual download from official website and sort images according to train.jsonl/dev.jsonl into train/dev folder
  • Rendered SST2, Country211: Manual download from CLIP repo
  • Other datasets: Use scripts from VISSL

Then set all dataset paths in dataset_catalog.json.

Evaluate zero-shot transfer to various classification benchmarks with eval_zeroshot.py, which reads labels and templates from labels.json/templates.json and dataset paths from dataset_catalog.json. Inference is performed with a single gpu. By default, the script iterates through all datasets in dataset_catalog.json and evaluates zero-shot in order. Evaluation can be limited to a subset of datasets by replacing for d in datasets: with for d in ['imagenet']: on line 78.

python eval_zeroshot.py --resume /path/to/checkpoint.pt

4. Evaluation: Linear Classification

We use a modified version of the MoCo v3 ImageNet linear classification script, main_linear.py. We use the same single node 8-gpu recipe for all model sizes. See main_linear.py for the full list of default arguments. As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_linear.py with torchrun --nproc_per_node=8 main_linear.py. This script reads the ImageNet dataset path from the dataset catalog (dataset_catalog.json), which must be set properly before training.

python run_with_submitit_linear.py  \
  --arch vit_base_patch16_224 --dataset imagenet \
  --pretrained /path/to/checkpoint.pt

To evaluate linear classification on other datasets, set --dataset to the corresponding dataset name listed in dataset_catalog.json.

5. Evaluation: End-to-End Finetuning

We use a modified version of the ImageNet finetuning script from BeiT. Our code has been tested with commit f8f3df8. We have removed the explicit torch, torchvision, and timm dependencies from beit_finetuning/requirements.txt, as they conflict with the versions used in our SLIP code (CUDA 11.3/CuDNN 8.2.0, PyTorch 1.10.0 and timm 0.5.0). The fintuning code has been modified and tested to work with these versions.

5.1. Setup

To evaluate end-to-end finetuning on ImageNet, first clone the BeiT repo and checkout the correct commit:

git clone [email protected]:microsoft/unilm.git
cd unilm/beit
git checkout f8f3df8

Now copy over modified files from our beit_finetuning directory:

cp beit_finetuning/* unilm/beit
cd unilm/beit

Install pip dependencies and Nvidia Apex:

pip install -r requirements.txt
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.2. Commands

As with pre-training, our workflow uses submitit. For local training with torchrun, replace python run_with_submitit_finetune.py with torchrun --nproc_per_node=8 run_class_finetuning.py. We established finetuning recipes based on the BeiT recipes with some light additional hyperparameter tuning. We increase regularization with model size: ViT-S uses drop_path=0 and layer_decay=0.65, ViT-B uses drop_path=0.1 and layer_decay=0.65, and ViT-L uses drop_path=0.1 and layer_decay=0.75. Note the use of the --finetune argument instead of --resume.

ViT-Small (MoCo v3 version w/ 12 vs. 6 heads)

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_small_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Base

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 100 --warmup_epochs 20 \
    --model beit_base_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.65 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

ViT-Large

python run_with_submitit_finetune.py \
    --batch_size 128 --enable_deepspeed \
    --epochs 50 --warmup_epochs 5 \
    --model beit_large_patch16_224 --nb_classes 1000 \
    --imagenet_default_mean_and_std \
    --model_key state_dict --model_prefix module.visual. \
    --disable_rel_pos_bias --abs_pos_emb --use_cls \
    --mixup 0.8 --cutmix 1 \
    --layer_scale_init_value 0 \
    --lr 4e-3 --drop_path 0.1 --layer_decay 0.75 \
    --output_dir /path/to/output_dir --finetune /path/to/checkpoint.pt

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{mu2021slip,
  author  = {Norman Mu and Alexander Kirillov and David Wagner and Saining Xie},
  title   = {SLIP: Self-supervision meets Language-Image Pre-training},
  journal = {arXiv preprint arXiv:2112.12750},
  year    = {2021},
}
Owner
Meta Research
Meta Research
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022