MEDS: Enhancing Memory Error Detection for Large-Scale Applications

Related tags

Deep LearningMEDS
Overview

MEDS: Enhancing Memory Error Detection for Large-Scale Applications

Prerequisites

  • cmake and clang

Build MEDS supporting compiler

$ make

Build Using Docker

# build docker image
$ docker build -t meds .

# run docker image
$ docker run --cap-add=SYS_PTRACE -it meds /bin/bash

Testing MEDS

  • MEDS's testing runs original ASAN's testcases as well as MEDS specific testcases.

    • Copied ASAN's testcases in llvm/projects/compiler-rt/test/meds/TestCases/ASan
    • MEDS specific testcases in llvm/projects/compiler-rt/test/meds/TestCases/Meds
  • To run the test,

$ make test

Testing Time: 30.70s
 Expected Passes    : 183
 Expected Failures  : 1
 Unsupported Tests  : 50

Build applications with MEDS heap allocation and ASan stack and global

  • Given a test program test.cc,
$ cat > test.cc

int main(int argc, char **argv) {
  int *a = new int[10];
  a[argc * 10] = 1;
  return 0;
}
  • test.cc can be built using the option, -fsanitize=meds.
$ build/bin/clang++ -fsanitize=meds test.cc -o test
$ ./test

==90589==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x43fff67eb078 at pc 0x0000004f926d bp 0x7fffffffe440 sp 0x7fffffffe438
WRITE of size 4 at 0x43fff67eb078 thread T0
    #0 0x4f926c in main (/home/wookhyun/release/meds-release/a.out+0x4f926c)
    #1 0x7ffff6b5c82f in __libc_start_main /build/glibc-bfm8X4/glibc-2.23/csu/../csu/libc-start.c:291
    #2 0x419cb8 in _start (/home/wookhyun/release/meds-release/a.out+0x419cb8)

Address 0x43fff67eb078 is a wild pointer.
SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/wookhyun/release/meds-release/a.out+0x4f926c) in main
Shadow bytes around the buggy address:
  0x08807ecf55b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x08807ecf55f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x08807ecf5600: fa fa fa fa fa fa fa fa fa fa 00 00 00 00 00[fa]
  0x08807ecf5610: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5620: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5630: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5640: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x08807ecf5650: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
==90589==ABORTING

Options

  • -fsanitize=meds: Enable heap protection using MEDS (stack and global are protected using ASAN)

  • -mllvm -meds-stack=1: Enable stack protection using MEDS

  • -mllvm -meds-global=1 -mcmodel=large: Enable global protection using MEDS

    • This also requires --emit-relocs in LDFLAGS
  • Example: to protect heap/stack using MEDS and global using ASAN

$ clang -fsanitize=meds -mllvm -meds-stack=1 test.c -o test
  • Example: to protect heap/global using MEDS and stack using ASAN
$ clang -fsanitize=meds -mllvm -meds-global=1 -mcmodel=large -Wl,-emit-relocs test.c -o test
  • Example: to protect heap/stack/global using MEDS
$ clang -fsanitize=meds -mllvm -meds-stack=1 -mllvm -meds-global=1 -mcmodel=large -Wl,--emit-relocs

Contributors

Owner
Secomp Lab at Purdue University
Secomp Lab at Purdue University
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022