Attention Probe: Vision Transformer Distillation in the Wild

Overview

Attention Probe: Vision Transformer Distillation in the Wild

License: MIT

Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang
In ICASSP 2022

This code is the Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Overview

  • We propose the concept of Attention Probe, a special section of the attention map to utilize a large amount of unlabeled data in the wild to complete the vision transformer data-free distillation task. Instead of generating images from the teacher network with a series of priori, images most relevant to the given pre-trained network and tasks will be identified from a large unlabeled dataset (e.g., Flickr) to conduct the knowledge distillation task.
  • We propose a simple yet efficient distillation algorithm, called probe distillation, to distill the student model using intermediate features of the teacher model, which is based on the Attention Probe.

Prerequisite

We use Pytorch 1.7.1, and CUDA 11.0. You can install them with

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

It should also be applicable to other Pytorch and CUDA versions.

Usage

Data Preparation

First, you need to modify the storage format of the cifar-10/100 and tinyimagenet dataset to the style of ImageNet, etc. CIFAR 10 run:

python process_cifar10.py

CIFAR 100 run:

python process_cifar100.py

Tiny-ImageNet run:

python process_tinyimagenet.py
python process_move_file.py

The dataset dir should have the following structure:

dir/
  train/
    ...
  val/
    n01440764/
      ILSVRC2012_val_00000293.JPEG
      ...
    ...

Train a normal teacher network

For this step you need to train normal teacher transformer models for selecting valuable data from the wild. We train the teacher model based on the timm PyTorch library:

timm

Our pretrained teacher models (CIFAR-10, CIFAR-100, ImageNet, Tiny-ImageNet, MNIST) can be downloaded from here:

Pretrained teacher models

Select valuable data from the wild

Then, you can use the Attention Probe method to select valuable data in the wild dataset.

To select valuable data on the CIFAR-10 dataset

bash training.sh
(CIFAR 10 run: CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar10 --data_cifar $root_cifar10 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar10 --selected_file $selected_cifar10 --output_dir $output_student_cifar10 --nb_classes 10 --lr_S 7.5e-4 --attnprobe_sel --attnprobe_dist )

(CIFAR 100 run: CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar10 --data_cifar $root_cifar10 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar10 --selected_file $selected_cifar10 --output_dir $output_student_cifar10 --nb_classes 10 --lr_S 7.5e-4 --attnprobe_sel --attnprobe_dist )

After you will get "class_weights.pth, pred_out.pth, value_blk3.pth, value_blk7.pth, value_out.pth" in '/selected/cifar10/' or '/selected/cifar100/' directory, you have already obtained the selected data.

Probe Knowledge Distillation for Student networks

Then you can distill the student model using intermediate features of the teacher model based on the selected data.

bash training.sh
(CIFAR 10 run: CUDA_VISIBLE_DEVICES=0 python DFND_DeiT-train.py --dataset cifar100 --data_cifar $root_cifar100 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar100 --selected_file $selected_cifar100 --output_dir $output_student_cifar100 --nb_classes 100 --lr_S 8.5e-4 --attnprobe_sel --attnprobe_dist)

(CIFAR 100 run: CUDA_VISIBLE_DEVICES=0,1,2,3 python DFND_DeiT-train.py --dataset cifar100 --data_cifar $root_cifar100 --data_imagenet $root_wild --num_select 650000 --teacher_dir $teacher_cifar100 --selected_file $selected_cifar100 --output_dir $output_student_cifar100 --nb_classes 100 --lr_S 8.5e-4 --attnprobe_sel --attnprobe_dist)

you will get the student transformer model in '/output/cifar10/student/' or '/output/cifar100/student/' directory.

Our distilled student models (CIFAR-10, CIFAR-100, ImageNet, Tiny-ImageNet, MNIST) can be downloaded from here: Distilled student models

Results

Citation

@inproceedings{
wang2022attention,
title={Attention Probe: Vision Transformer Distillation in the Wild},
author={Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang},
booktitle={International Conference on Acoustics, Speech and Signal Processing},
year={2022},
url={https://2022.ieeeicassp.org/}
}

Acknowledgement

Owner
Wang jiahao
CVer,AutoML,NAS,Model Compression
Wang jiahao
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022