An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

Related tags

Deep LearningGLOM
Overview

GLOM

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this implementation, please watch Yannick Kilcher's GLOM video, then read this README.md, then read the code.

Running

Open in jupyter notebook to run. Program expects an Nvidia graphics card for gpu speedup. If you run out of gpu memory, decrease the batch_size variable. If you want to look at the code on github and it fails, try reloading or refreshing several times.

Results

The best models, which have been posted under the best_models folder, reached an accuracy of about 91%.

Implementation details

Three Types of networks per layer of vectors

  1. Top-Down Network
  2. Bottom-up Network
  3. Attention on the same layer Network

Intro to State

There is an initial state that all three types of network outputs get added to after every time step. The bottom layer of the state is the input vector where the MNIST pixel data is kept and doesn't get anything added to it to retain the MNIST pixel data. The top layer of the state is the output layer where the loss function is applied and trained to be the one-hot MNIST target vector.

Explanation of compute_all function

Each type of network will see a 3x3 grid of vectors surrounding the current network input vector at the current layer. This is done to allow information to travel faster laterally across vectors, allowing for more information to be sent across an image in less steps. The easy way to do this is to shift (or roll) every vector along the x and y axis and then concatenate the vectors ontop of eachother so that every place a vector used to be in the state, now contains every vector and its neighboring vectors in the same layer. This also connects the edges of the image so that data can be passed from one edge of the image to the other, reducing the maximum distance any two pixels or vectors can be from one another.

For a more complex dataset, its possible this could pose some issues since two separate edges of an image aren't generally continous, but for MNIST, this problem doesn't arise. Then, these vectors are fed to each type of model. The models will get an input of all neighboring state vectors for a certain layer for each pixel that is given. Each model will then output a single vector. But there are 3 types of models per layer. In this example, every line drawn is a new model that is reused for every pixel this process is done for. After each model type has given an output, the three lists of vectors are added together.

This will give a single list of vectors that will be added to the corresponding list of vectors at the specific x,y coordinate from the original state.

Repeating this step for every list of vectors per x,y coordinate in the original state will yield the full new State value.

Since each network only sees a 3x3 grid and not larger image patches, this technique can be used for any size images and is easily parrallelizable.

If I had more compute

My 2080Ti runs into memory errors running this if the batch size is above around 30, so here are my implementatin ideas if I had more compute.

  1. Increase batch_size. This probably wont affect the training, but it would make testing the accuracy faster.
  2. Saving more states throughout the steps taken and adding them together. This would allow for gradients to get passed back to the original state similar to how RESNET can train very large model since the gradients can get passed backwards easier. This has been implemented to a smaller degree already and showed massive accuracy improvements.
  3. Perform some kind of evolutionary parameter search by mutating the model parameters while also using backprop. This has been shown to improve the accuracy of image classifiers and other models. But this would take a ton of compute.

Yannic Kilcher's Attention

This hass been pushed to github because during testing and tuning hyperparameters, a better model than previous was found. More testing needs to be done and I'm working on the visual explanation for it now. Previous versions of this code don't have the attention seen in the current version and will have similar performance.

Other Ideas behind the paper implementation

This is basically a neural cellular automata from the paper Growing Neural Cellular Automata with some inspiration from the follow up paper Self-classifying MNIST Digits. Except instead of a single list of numbers (or one vector) per pixel, there are several vectors per pixel in each image. The Growing Neural Cellular Automata paper was very difficult to train also because the long gradient chains, so increasing the models complexity in this GLOM paper makes training even harder. But the neural cellular automata papers are the reason why the MSE loss function is used while also adding random noise to the state during training.

To do

  1. Generated the explanation for Yannick Kilcher's version of attention that is implemented here.
  2. See if part-whole heirarchies are being found.
  3. Keep testing hyperpatameters to push accuracy higher.
  4. Test different state initializations.
  5. Train on harder datasets.

If you find any issues, please feel free to contact me

Owner
Just a random coder
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023