We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

Related tags

Deep LearningConTNet
Overview

ConTNet

Introduction

ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large receptive field, limiting the performance of ConvNets on downstream tasks. (2) Transformer-based model is not robust enough and requires special training settings or hundreds of millions of images as the pretrain dataset, thereby limiting their adoption. ConTNet combines convolution and transformer alternately, which is very robust and can be optimized like ResNet unlike the recently-proposed transformer-based models (e.g., ViT, DeiT) that are sensitive to hyper-parameters and need many tricks when trained from scratch on a midsize dataset (e.g., ImageNet).

Main Results on ImageNet

name resolution [email protected] #params(M) FLOPs(G) model
Res-18 224x224 71.5 11.7 1.8
ConT-S 224x224 74.9 10.1 1.5
Res-50 224x224 77.1 25.6 4.0
ConT-M 224x224 77.6 19.2 3.1
Res-101 224x224 78.2 44.5 7.6
ConT-B 224x224 77.9 39.6 6.4
DeiT-Ti* 224x224 72.2 5.7 1.3
ConT-Ti* 224x224 74.9 5.8 0.8
Res-18* 224x224 73.2 11.7 1.8
ConT-S* 224x224 76.5 10.1 1.5
Res-50* 224x224 78.6 25.6 4.0
DeiT-S* 224x224 79.8 22.1 4.6
ConT-M* 224x224 80.2 19.2 3.1
Res-101* 224x224 80.0 44.5 7.6
DeiT-B* 224x224 81.8 86.6 17.6
ConT-B* 224x224 81.8 39.6 6.4

Note: * indicates training with strong augmentations.

Main Results on Downstream Tasks

Object detection results on COCO.

method backbone #params(M) FLOPs(G) AP APs APm APl
RetinaNet Res-50
ConTNet-M
32.0
27.0
235.6
217.2
36.5
37.9
20.4
23.0
40.3
40.6
48.1
50.4
FCOS Res-50
ConTNet-M
32.2
27.2
242.9
228.4
38.7
40.8
22.9
25.1
42.5
44.6
50.1
53.0
faster rcnn Res-50
ConTNet-M
41.5
36.6
241.0
225.6
37.4
40.0
21.2
25.4
41.0
43.0
48.1
52.0

Instance segmentation results on Cityscapes based on Mask-RCNN.

backbone APbb APsbb APmbb APlbb APmk APsmk APmmk APlmk
Res-50
ConT-M
38.2
40.5
21.9
25.1
40.9
44.4
49.5
52.7
34.7
38.1
18.3
20.9
37.4
41.0
47.2
50.3

Semantic segmentation results on cityscapes.

model mIOU
PSP-Res50 77.12
PSP-ConTM 78.28

Bib Citing

@article{yan2021contnet,
    title={ConTNet: Why not use convolution and transformer at the same time?},
    author={Haotian Yan and Zhe Li and Weijian Li and Changhu Wang and Ming Wu and Chuang Zhang},
    year={2021},
    journal={arXiv preprint arXiv:2104.13497}
}
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022