This is the official repository of XVFI (eXtreme Video Frame Interpolation)

Overview

XVFI PWC PWC

This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206

Last Update: 20210607

We provide the training and test code along with the trained weights and the dataset (train+test) used for XVFI. If you find this repository useful, please consider citing our paper.

Examples of the VFI (x8 Multi-Frame Interpolation) results on X-TEST

results_045_resized results_079_resized results_158_resized
The [email protected] input frames are interpolated to be [email protected] frames. All results are encoded at 30fps to be played as x8 slow motion and spatially down-scaled due to the limit of file sizes. All methods are trained on X-TRAIN.

Table of Contents

  1. X4K1000FPS
  2. Requirements
  3. Test
  4. Test_Custom
  5. Training
  6. Reference
  7. Contact

X4K1000FPS

Dataset of high-resolution (4096×2160), high-fps (1000fps) video frames with extreme motion.

003 004 045 078 081 146
Some examples of X4K1000FPS dataset, which are frames of 1000-fps and 4K-resolution. Our dataset contains the various scenes with extreme motions. (Displayed in spatiotemporally subsampled .gif files)

We provide our X4K1000FPS dataset which consists of X-TEST and X-TRAIN. Please refer to our main/suppl. paper for the details of the dataset. You can download the dataset from this dropbox link.

X-TEST consists of 15 video clips with 33-length of 4K-1000fps frames. It follows the below directory format:

├──── YOUR_DIR/
    ├──── test/
       ├──── Type1/
          ├──── TEST01/
             ├──── 0000.png
             ├──── ...
             └──── 0032.png
          ├──── TEST02/
             ├──── 0000.png
             ├──── ...
             └──── 0032.png
          ├──── ...
       ├──── ...

X-TRAIN consists of 4,408 clips from various types of 110 scenes. The clips are 65-length of 1000fps frames. Each frame is the size of 768x768 cropped from 4K frame. It follows the below directory format:

├──── YOUR_DIR/
    ├──── train/
       ├──── 002/
          ├──── occ008.320/
             ├──── 0000.png
             ├──── ...
             └──── 0064.png
          ├──── occ008.322/
             ├──── 0000.png
             ├──── ...
             └──── 0064.png
          ├──── ...
       ├──── ...

After downloading the files from the link, decompress the encoded_test.tar.gz and encoded_train.tar.gz. The resulting .mp4 files can be decoded into .png files via running mp4_decoding.py. Please follow the instruction written in mp4_decoding.py.

Requirements

Our code is implemented using PyTorch1.7, and was tested under the following setting:

  • Python 3.7
  • PyTorch 1.7.1
  • CUDA 10.2
  • cuDNN 7.6.5
  • NVIDIA TITAN RTX GPU
  • Ubuntu 16.04 LTS

Caution: since there is "align_corners" option in "nn.functional.interpolate" and "nn.functional.grid_sample" in PyTorch1.7, we recommend you to follow our settings. Especially, if you use the other PyTorch versions, it may lead to yield a different performance.

Test

Quick Start for X-TEST (x8 Multi-Frame Interpolation as in Table 2)

  1. Download the source codes in a directory of your choice .
  2. First download our X-TEST test dataset by following the above section 'X4K1000FPS'.
  3. Download the pre-trained weights, which was trained by X-TRAIN, from this link to place in /checkpoint_dir/XVFInet_X4K1000FPS_exp1.
XVFI
└── checkpoint_dir
   └── XVFInet_X4K1000FPS_exp1
       ├── XVFInet_X4K1000FPS_exp1_latest.pt           
  1. Run main.py with the following options in parse_args:
python main.py --gpu 0 --phase 'test' --exp_num 1 --dataset 'X4K1000FPS' --module_scale_factor 4 --S_tst 5 --multiple 8 

==> It would yield (PSNR/SSIM/tOF) = (30.12/0.870/2.15).

python main.py --gpu 0 --phase 'test' --exp_num 1 --dataset 'X4K1000FPS' --module_scale_factor 4 --S_tst 3 --multiple 8 

==> It would yield (PSNR/SSIM/tOF) = (28.86/0.858/2.67).

Description

  • After running with the above test option, you can get the result images in /test_img_dir/XVFInet_X4K1000FPS_exp1, then obtain the PSNR/SSIM/tOF results per each test clip as "total_metrics.csv" in the same folder.
  • Our proposed XVFI-Net can start from any downscaled input upward by regulating '--S_tst', which is adjustable in terms of the number of scales for inference according to the input resolutions or the motion magnitudes.
  • You can get any Multi-Frame Interpolation (x M) result by regulating '--multiple'.

Quick Start for Vimeo90K (as in Fig. 8)

  1. Download the source codes in a directory of your choice .
  2. First download Vimeo90K dataset from this link (including 'tri_trainlist.txt') to place in /vimeo_triplet.
XVFI
└── vimeo_triplet
       ├──  sequences
       readme.txt
       tri_testlist.txt
       tri_trainlist.txt
  1. Download the pre-trained weights (XVFI-Net_v), which was trained by Vimeo90K, from this link to place in /checkpoint_dir/XVFInet_Vimeo_exp1.
XVFI
└── checkpoint_dir
   └── XVFInet_Vimeo_exp1
       ├── XVFInet_Vimeo_exp1_latest.pt           
  1. Run main.py with the following options in parse_args:
python main.py --gpu 0 --phase 'test' --exp_num 1 --dataset 'Vimeo' --module_scale_factor 2 --S_tst 1 --multiple 2

==> It would yield PSNR = 35.07 on Vimeo90K.

Description

  • After running with the above test option, you can get the result images in /test_img_dir/XVFInet_Vimeo_exp1.
  • There are certain code lines in front of the 'def main()' for a convenience when running with the Vimeo option.
  • The SSIM result of 0.9760 as in Fig. 8 was measured by matlab ssim function for a fair comparison after running the above guide because other SOTA methods did so. We also upload "compare_psnr_ssim.m" matlab file to obtain it.
  • It should be noted that there is a typo "S_trn and S_tst are set to 2" in the current version of XVFI paper, which should be modified to 1 (not 2), sorry for inconvenience.

Test_Custom

Quick Start for your own video data ('--custom_path') for any Multi-Frame Interpolation (x M)

  1. Download the source codes in a directory of your choice .
  2. First prepare your own video datasets in /custom_path by following a hierarchy as belows:
XVFI
└── custom_path
   ├── scene1
       ├── 'xxx.png'
       ├── ...
       └── 'xxx.png'
   ...
   
   ├── sceneN
       ├── 'xxxxx.png'
       ├── ...
       └── 'xxxxx.png'

  1. Download the pre-trained weights trained on X-TRAIN or Vimeo90K as decribed above.

  2. Run main.py with the following options in parse_args (ex) x8 Multi-Frame Interpolation):

# For the model trained on X-TRAIN
python main.py --gpu 0 --phase 'test_custom' --exp_num 1 --dataset 'X4K1000FPS' --module_scale_factor 4 --S_tst 5 --multiple 8 --custom_path './custom_path'
# For the model trained on Vimeo90K
python main.py --gpu 0 --phase 'test_custom' --exp_num 1 --dataset 'Vimeo' --module_scale_factor 2 --S_tst 1 --multiple 8 --custom_path './custom_path'

Description

  • Our proposed XVFI-Net can start from any downscaled input upward by regulating '--S_tst', which is adjustable in terms of the number of scales for inference according to the input resolutions or the motion magnitudes.
  • You can get any Multi-Frame Interpolation (x M) result by regulating '--multiple'.
  • It only supports for '.png' format.
  • Since we can not cover diverse possibilites of naming rule for custom frames, please sort your own frames properly.

Training

Quick Start for X-TRAIN

  1. Download the source codes in a directory of your choice .
  2. First download our X-TRAIN train/val/test datasets by following the above section 'X4K1000FPS' and place them as belows:
XVFI
└── X4K1000FPS
      ├──  train
          ├── 002
          ├── ...
          └── 172
      ├──  val
          ├── Type1
          ├── Type2
          ├── Type3
      ├──  test
          ├── Type1
          ├── Type2
          ├── Type3

  1. Run main.py with the following options in parse_args:
python main.py --phase 'train' --exp_num 1 --dataset 'X4K1000FPS' --module_scale_factor 4 --S_trn 3 --S_tst 5

Quick Start for Vimeo90K

  1. Download the source codes in a directory of your choice .
  2. First download Vimeo90K dataset from this link (including 'tri_trainlist.txt') to place in /vimeo_triplet.
XVFI
└── vimeo_triplet
       ├──  sequences
       readme.txt
       tri_testlist.txt
       tri_trainlist.txt
  1. Run main.py with the following options in parse_args:
python main.py --phase 'train' --exp_num 1 --dataset 'Vimeo' --module_scale_factor 2 --S_trn 1 --S_tst 1

Description

  • You can freely regulate other arguments in the parser of main.py, here

Reference

Hyeonjun Sim*, Jihyong Oh*, and Munchurl Kim "XVFI: eXtreme Video Frame Interpolation", https://arxiv.org/abs/2103.16206, 2021. (* equal contribution)

BibTeX

@article{sim2021xvfi,
  title={XVFI: eXtreme Video Frame Interpolation},
  author={Sim, Hyeonjun and Oh, Jihyong and Kim, Munchurl},
  journal={arXiv preprint arXiv:2103.16206},
  year={2021}
}

Contact

If you have any question, please send an email to either [email protected] or [email protected].

License

The source codes and datasets can be freely used for research and education only. Any commercial use should get formal permission first.

Owner
Jihyong Oh
KAIST Ph.D. Candidate 3rd yr. Please refer to my personal homepage as below (URL).
Jihyong Oh
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022