Implementation of momentum^2 teacher

Overview

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning

Requirements

  1. All experiments are done with python3.6, torch==1.5.0; torchvision==0.6.0

Usage

Data Preparation

Prepare the ImageNet data in ${root_of_your_clone}/data/imagenet_train, ${root_of_your_clone}/data/imagenet_val. Since we have an internal platform(storage) to read imagenet, I have not tried the local mode. You may need to do some modification in momentum_teacher/data/dataset.py to support the local mode.

Training

Before training, ensure the path (namely ${root_of_clone}) is added in your PYTHONPATH, e.g.

export PYTHONPATH=$PYTHONPATH:${root_of_clone}

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the output folder, and the training log & models will be dumped to './outputs/${experiment-name}'
  4. using -f to specify the description file of ur experiment.

e.g.,

python3 momentum_teacher/tools/train.py -b 256 -d 0-7 --experiment-name your_exp -f momentum_teacher/exps/arxiv/exp_8_v100/momentum2_teacher_100e_exp.py

Linear Evaluation:

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8 gpus machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the folder for saving pre-training models.
python3 momentum_teacher/tools/eval.py -b 256 --experiment-name your_exp -f momentum_teacher/exps/arxiv/linear_eval_exp_byol.py

Results

Results of Pretraining on a Single Machine

After pretraining on 8 NVIDIA V100 GPUS and 1024 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~1.8 day 70.7 -
path 200 ~3.6 day 72.7 -
path 300 ~5.5 day 73.8 -

After pretraining on 8 NVIDIA 2080 GPUS and 256 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy wights
path 100 ~2.5 day 70.4 -
path 200 ~5 day 72.3 -
path 300 ~7.5 day 72.9 -

Results of Pretraining on Multiple Machines

E.g., To do unsupervised pre-training with 4096 batch-sizes and 32 V100 GPUs. run:

Suggesting that each machine has 8 V100 GPUs and there are 4 machines

# machine 1:
export MACHINE=0; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 2:
export MACHINE=1; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 3:
export MACHINE=2; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 4:
export MACHINE=3; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx

results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~11hour 70.3 -
path 200 ~22hour 72.5 -
path 300 ~33hour 73.7 -

To do unsupervised pre-training with 4096 batch-sizes and 128 2080 GPUs, pls follow the above guides. Results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~5hour 69.0 -
path 200 ~10hour 71.5 -
path 300 ~15hour 72.3 -

Disclaimer

This is an implementation for Momentum^2 Teacher, it is worth noting that:

  • The original implementation is based on our internal Platform.
  • This released version has slightly better performances compared with the tech report's.
Owner
jemmy li
jemmy li
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022