Implementation of momentum^2 teacher

Overview

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning

Requirements

  1. All experiments are done with python3.6, torch==1.5.0; torchvision==0.6.0

Usage

Data Preparation

Prepare the ImageNet data in ${root_of_your_clone}/data/imagenet_train, ${root_of_your_clone}/data/imagenet_val. Since we have an internal platform(storage) to read imagenet, I have not tried the local mode. You may need to do some modification in momentum_teacher/data/dataset.py to support the local mode.

Training

Before training, ensure the path (namely ${root_of_clone}) is added in your PYTHONPATH, e.g.

export PYTHONPATH=$PYTHONPATH:${root_of_clone}

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the output folder, and the training log & models will be dumped to './outputs/${experiment-name}'
  4. using -f to specify the description file of ur experiment.

e.g.,

python3 momentum_teacher/tools/train.py -b 256 -d 0-7 --experiment-name your_exp -f momentum_teacher/exps/arxiv/exp_8_v100/momentum2_teacher_100e_exp.py

Linear Evaluation:

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8 gpus machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the folder for saving pre-training models.
python3 momentum_teacher/tools/eval.py -b 256 --experiment-name your_exp -f momentum_teacher/exps/arxiv/linear_eval_exp_byol.py

Results

Results of Pretraining on a Single Machine

After pretraining on 8 NVIDIA V100 GPUS and 1024 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~1.8 day 70.7 -
path 200 ~3.6 day 72.7 -
path 300 ~5.5 day 73.8 -

After pretraining on 8 NVIDIA 2080 GPUS and 256 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy wights
path 100 ~2.5 day 70.4 -
path 200 ~5 day 72.3 -
path 300 ~7.5 day 72.9 -

Results of Pretraining on Multiple Machines

E.g., To do unsupervised pre-training with 4096 batch-sizes and 32 V100 GPUs. run:

Suggesting that each machine has 8 V100 GPUs and there are 4 machines

# machine 1:
export MACHINE=0; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 2:
export MACHINE=1; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 3:
export MACHINE=2; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 4:
export MACHINE=3; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx

results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~11hour 70.3 -
path 200 ~22hour 72.5 -
path 300 ~33hour 73.7 -

To do unsupervised pre-training with 4096 batch-sizes and 128 2080 GPUs, pls follow the above guides. Results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~5hour 69.0 -
path 200 ~10hour 71.5 -
path 300 ~15hour 72.3 -

Disclaimer

This is an implementation for Momentum^2 Teacher, it is worth noting that:

  • The original implementation is based on our internal Platform.
  • This released version has slightly better performances compared with the tech report's.
Owner
jemmy li
jemmy li
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022