Implementation of momentum^2 teacher

Overview

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning

Requirements

  1. All experiments are done with python3.6, torch==1.5.0; torchvision==0.6.0

Usage

Data Preparation

Prepare the ImageNet data in ${root_of_your_clone}/data/imagenet_train, ${root_of_your_clone}/data/imagenet_val. Since we have an internal platform(storage) to read imagenet, I have not tried the local mode. You may need to do some modification in momentum_teacher/data/dataset.py to support the local mode.

Training

Before training, ensure the path (namely ${root_of_clone}) is added in your PYTHONPATH, e.g.

export PYTHONPATH=$PYTHONPATH:${root_of_clone}

To do unsupervised pre-training of a ResNet-50 model on ImageNet in an 8-gpu machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the output folder, and the training log & models will be dumped to './outputs/${experiment-name}'
  4. using -f to specify the description file of ur experiment.

e.g.,

python3 momentum_teacher/tools/train.py -b 256 -d 0-7 --experiment-name your_exp -f momentum_teacher/exps/arxiv/exp_8_v100/momentum2_teacher_100e_exp.py

Linear Evaluation:

With a pre-trained model, to train a supervised linear classifier on frozen features/weights in an 8 gpus machine, run:

  1. using -d to specify gpu_id for training, e.g., -d 0-7
  2. using -b to specify batch_size, e.g., -b 256
  3. using --experiment-name to specify the folder for saving pre-training models.
python3 momentum_teacher/tools/eval.py -b 256 --experiment-name your_exp -f momentum_teacher/exps/arxiv/linear_eval_exp_byol.py

Results

Results of Pretraining on a Single Machine

After pretraining on 8 NVIDIA V100 GPUS and 1024 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~1.8 day 70.7 -
path 200 ~3.6 day 72.7 -
path 300 ~5.5 day 73.8 -

After pretraining on 8 NVIDIA 2080 GPUS and 256 batch-sizes, the results of linear-evaluation are:

pre-train code pre-train
epochs
pre-train time accuracy wights
path 100 ~2.5 day 70.4 -
path 200 ~5 day 72.3 -
path 300 ~7.5 day 72.9 -

Results of Pretraining on Multiple Machines

E.g., To do unsupervised pre-training with 4096 batch-sizes and 32 V100 GPUs. run:

Suggesting that each machine has 8 V100 GPUs and there are 4 machines

# machine 1:
export MACHINE=0; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 2:
export MACHINE=1; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 3:
export MACHINE=2; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx
# machine 4:
export MACHINE=3; export MACHINE_TOTAL=4; python3 momentum_teacher/tools/train.py -b 4096 -f xxx

results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~11hour 70.3 -
path 200 ~22hour 72.5 -
path 300 ~33hour 73.7 -

To do unsupervised pre-training with 4096 batch-sizes and 128 2080 GPUs, pls follow the above guides. Results of linear-eval:

pre-train code pre-train
epochs
pre-train time accuracy weights
path 100 ~5hour 69.0 -
path 200 ~10hour 71.5 -
path 300 ~15hour 72.3 -

Disclaimer

This is an implementation for Momentum^2 Teacher, it is worth noting that:

  • The original implementation is based on our internal Platform.
  • This released version has slightly better performances compared with the tech report's.
Owner
jemmy li
jemmy li
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023