Minimal fastai code needed for working with pytorch

Overview

fastai_minima

A mimal version of fastai with the barebones needed to work with Pytorch

#all_slow

Install

pip install fastai_minima

How to use

This library is designed to bring in only the minimal needed from fastai to work with raw Pytorch. This includes:

  • Learner
  • Callbacks
  • Optimizer
  • DataLoaders (but not the DataBlock)
  • Metrics

Below we can find a very minimal example based off my Pytorch to fastai, Bridging the Gap article:

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)

dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
                                          shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
                                         shuffle=False, num_workers=2)
Files already downloaded and verified
Files already downloaded and verified
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
criterion = nn.CrossEntropyLoss()
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))

dls = DataLoaders(trainloader, testloader)
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)

# To use the GPU, do 
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
learn.fit(2, lr=0.001)
epoch train_loss valid_loss time
0 2.269467 2.266472 01:20
1 1.876898 1.879593 01:21
/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at  /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
  allow_unreachable=True)  # allow_unreachable flag

If you want to do differential learning rates, when creating your splitter to pass into fastai's Learner you should utilize the convert_params to make it compatable with Pytorch Optimizers:

def splitter(m): return convert_params([[m.a], [m.b]])
learn = Learner(..., splitter=splitter)
Owner
Zachary Mueller
Software Design and Development Major at University of West Florida
Zachary Mueller
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Bytedance Inc. 2.5k Jan 06, 2023
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021