A High-Performance Distributed Library for Large-Scale Bundle Adjustment

Overview

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment

This repo contains an official implementation of MegBA.

MegBA is a fast and distributed library for large-scale Bundle Adjustment (BA). MegBA has a novel end-to-end vectorised BA algorithm which can fully exploit the massive parallel cores on GPUs, thus speeding up the entire BA computation. It also has a novel distributed BA algorithm that can automatically partition BA problems, and solve BA sub-problems using distributed GPUs. The GPUs synchronise intermediate solving state using network-efficient collective communication, and the synchronisation is designed to minimise communication cost. MegBA has a memory-efficient GPU runtime and it exposes g2o-compatible APIs. Experiments show that MegBA can out-perform state-of-the-art BA libraries (i.e., Ceres and DeepLM) by ~50x and ~5x respectively, in public large-scale BA benchmarks.

Version

  • 2021/12/06 Beta version released! It corresponds to this paper.
  • General version code release (Expected Dec 31 2021)
  • memory-efficient version with implicit Hessian (TBD)
  • analytical differential module, IMU factor, prior factor (TBD)

Paper:

Quickstart

Dependencies:

You can also easily install all dependencies with script: script

Demo with BAL dataset:

  • Download any pre.txt.bz2 file from BAL Dataset: https://grail.cs.washington.edu/projects/bal/ and uncompressed.

  • Compile

    mkdir build
    cd build
    cmake ..
    make -j4 BAL_Double
  • Run the demo (Venice-1778)

    cd examples
    ./BAL_Double --name=Venice --world_size=2 --iter=100 --solver_tol=1e-1 --solver_refuse_ratio=1 --solver_max_iter=100 --tau=1e4 --epsilon1=1 --epsilon2=1e-10
    • world_size: number of GPUs available
    • iter: the maximal number of LM iteration
    • epsilon: threshold in LM
    • solver_tol: tolerance of solver (distributed PCG solver)
    • solver_refuse_ratio: early stop for the solver
    • solver_max_iter: the maximal iteration of solver
    • tau: the initial region

Notes for the practitioners

  • Currently, MegBA implements automatic differentation only for generalizability. Please consider implementing your own analytical differentiation module.
  • If you use devices without modern inter-device communication (i.e., NVLinks..), you might find the data transfer is the bottleneck.
  • Empirically, we found it is necessary to customize the LM trust-region strategies and tune its hyper-parameters to further boost the performance.

Documentation

Under doc/ (Coming soon...)

Collaborate with Us

Please check here for MegBA's future plan.

If you are intereted in MegBA and want to collaborate, you can:

  • Apply for an Internship at Megvii Research 3D, please send your resume to [email protected], with your expected starting date. (subject: 3D组CUDA实习生-Name) Unfortunately, now we are only able to host interns with work authorization in China.
  • As an external collaborator (coding), just fork this repo and send PRs. We will review your PR carefully (and merge it into MegBA).
  • As an algorithm/novelty contributor, please send an email to [email protected].
  • Any new feature request, you can send an email to [email protected] as well. Note that it is not guaranteed the requested feature will be added or added soon

Contact Information:

BibTeX Citation

If you find MegBA useful for your project, please consider citing:

@misc{2021megba,
  title={MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment}, 
  author={Jie Ren and Wenteng Liang and Ran Yan and Luo Mai and Shiwen Liu and Xiao Liu},
  year={2021},
  eprint={2112.01349},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

MegBA is licensed under the Apache License, Version 2.0.

Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022