Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Overview

GalaxyMNIST

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Contains 10,000 images of galaxies (3x64x64), confidently labelled by Galaxy Zoo volunteers as belonging to one of four morphology classes.

Installation

git clone https://github.com/mwalmsley/galaxy_mnist
pip install -e galaxy_mnist

The only dependencies are pandas, scikit-learn, and h5py (for .hdf5 support). (py)torch is required but not specified as a dependency, because you likely already have it and may require a very specific version (e.g. from conda, AWS-optimised, etc).

Use

Simply use as with MNIST:

from galaxy_mnist import GalaxyMNIST

dataset = GalaxyMNIST(
    root='/some/download/folder',
    download=True,
    train=True  # by default, or set False for test set
)

Access the images and labels - in a fixed "canonical" 80/20 train/test division - like so:

images, labels = dataset.data, dataset.targets

You can also divide the data according to your own to your own preferences with load_custom_data:

(custom_train_images, custom_train_labels), (custom_test_images, custom_test_labels) = dataset.load_custom_data(test_size=0.8, stratify=True) 

See load_in_pytorch.py for a working example.

Dataset Details

GalaxyMNIST has four classes: smooth and round, smooth and cigar-shaped, edge-on-disk, and unbarred spiral (you can retrieve this as a list with GalaxyMNIST.classes).

The galaxies are selected from Galaxy Zoo DECaLS Campaign A (GZD-A), which classified images taken by DECaLS and released in DR1 and 2. The images are as shown to volunteers on Galaxy Zoo, except for a 75% crop followed by a resize to 64x64 pixels.

At least 17 people must have been asked the necessary questions, and at least half of them must have answered with the given class. The class labels are therefore much more confident than from, for example, simply labelling with the most common answer to some question.

The classes are balanced exactly equally across the whole dataset (2500 galaxies per class), but only approximately equally (by random sampling) in the canonical train/test split. For a split with exactly equal classes on both sides, use load_custom_data with stratify=True.

You can see the exact choices made to select the galaxies and labels under the reproduce folder. This includes the notebook exploring and selecting choices for pruning the decision tree, and the script for saving the final dataset(s).

Citations and Further Reading

If you use this dataset, please cite Galaxy Zoo DECaLS, the data release paper from which the labels are drawn. Please also acknowledge the DECaLS survey (see the linked paper for an example).

You can find the original volunteer votes (and images) on Zenodo here.

Owner
Mike Walmsley
Mike Walmsley
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022