3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

Overview

3rd Place Solution of Traffic4Cast 2021 Core Challenge

This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge.

Paper

Our solution is described in the "Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation" paper.

If you wish to cite this code, please do it as follows:

@misc{konyakhin2021solving,
      title={Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation}, 
      author={Vsevolod Konyakhin and Nina Lukashina and Aleksei Shpilman},
      year={2021},
      eprint={2111.03421},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Competition and Demonstration Track @ NeurIPS 2021

Learnt parameters

The models' learnt parameters are available by the link: https://drive.google.com/file/d/1zD0CecX4P3v5ugxaHO2CQW9oX7_D4BCa/view?usp=sharing
Please download the archive and unzip it into the weights folder of the repository, so its structure looks like the following:

├── ...
├── traffic4cast
├── weights
│   ├── densenet                 
│   │   ├── BERLIN_1008_1430_densenet_unet_mse_best_val_loss_2019=78.4303.pth                     
│   │   ├── CHICAGO_1010_1730_densenet_unet_mse_best_val_loss_2019=41.1579.pth
│   │   └── MELBOURNE_1009_1619_densenet_unet_mse_best_val_loss_2019=25.7395.pth    
│   ├── effnetb5
│   │   ├── BERLIN_1008_1430_efficientnetb5_unet_mse_best_val_loss_2019=80.3510.pth    
│   │   ├── CHICAGO_1012_1035_efficientnetb5_unet_mse_best_val_loss_2019=41.6425.pth
│   │   ├── ISTANBUL_1012_2315_efficientnetb5_unet_mse_best_val_loss_2019=55.7918.pth    
│   │   └── MELBOURNE_1010_0058_efficientnetb5_unet_mse_best_val_loss_2019=26.0132.pth    
│   └── unet
│       ├── BERLIN_0806_1425_vanilla_unet_mse_best_val_loss_2019=0.0000_v5.pth    
│       ├── CHICAGO_0805_0038_vanilla_unet_mse_best_val_loss_2019=42.6634.pth
│       ├── ISTANBUL_0805_2317_vanilla_unet_mse_best_val_loss_2019=0.0000_v4.pth
│       └── MELBOURNE_0804_1942_vanilla_unet_mse_best_val_loss_2019=26.7588.pth
├── ...

Submission reproduction

To generate the submission file, please run the following script:

# $1 - absolute path to the dataset, $2 device to run inference
sh submission.sh {absolute path to dataset} {cpu, cuda}
# Launch example
sh submission.sh /root/data/traffic4cast cuda

The above sctipt generates the submission file submission/submission_all_unets_da_none_mpcpm1_mean_temporal_{date}.zip, which gave us the best MSE of 49.379068541527 on the final leaderboard.

Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022