Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Overview

Audio-Track Separator

architecture

Introduction

Audio Source Separation is the process of separating a mixture (e.g. a pop band recording) into isolated sounds from individual sources (e.g. just the lead vocals). Basically, splitting a song into separate vocals and instruments.

In this Repository, We developed an audio track separator in tensorflow that successfully separates Vocals and Drums from an input audio song track.

We trained a U-Net model with two output layers. One output layer predicts the Vocals and the other predicts the Drums. The number of Output layers could be increased based on the number of elements one needs to separate from input Audio Track.

Technologies used:

  1. The entire architecture is built with tensorflow.
  2. Matplotlib has been used for visualization.
  3. Numpy has been used for mathematical operations.
  4. Librosa have used for the processing of Audio files.
  5. nussl for Dataset.

The dataset

We will be using the MUSDB18 dataset for this tutorial.

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated drums, bass, vocals and others stems.

musdb18 contains two folders, a folder with a training set: "train", composed of 100 songs, and a folder with a test set: "test", composed of 50 songs. Supervised approaches should be trained on the training set and tested on both sets.

All signals are stereophonic and encoded at 44.1kHz.

Exploratory Data Analysis

eda

resample

Building a Data Loader

In the pipeline we are re-sampling the audio data. For the time being our target is to separate the the Vocal and Drums audio from the original, hence the Pipeline returns original processed Audio as X and an array of processed Vocals & Drums audio as y.

Unet Architecture

model = AudioTrackSeparation()
model.build(input_shape=(None, DIM, 1))
model.build_graph().summary()

summary

summary


Implementation

Training

!python main.py --sampling_rate 11025 --train True --epoch 50 --batch 16 --model_save_path ./models/

Trains the u-net model on MUSDB18 Dataset and saves the trained model to the provided directory ( --model_save_path ).

Testing

!python main.py --sampling_rate 11025 --test /content/pop.00000.wav --model_save_path ./models/

Loads the model from model_save_path, reads the audio file from the provided path( --test ) with librosa, process it and use the model to predict the output. In the end, the predictions are visualized by a wave plot and saved to the root directory.

example1

example2

Model Performance

vocal loss

drum loss

Predictions

Drums

Drums

References

  1. Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation

  2. Multi-scale Multi-band DenseNets for Audio Source Separation

  3. Improved Speech Enhancement with the Wave-U-Net

Owner
Victor Basu
Hello! I am Data Scientist and I love to do research on Data Science and Machine Learning
Victor Basu
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021