Swapping face using Face Mesh with TensorFlow Lite

Overview
demo.mp4

Aiine Transform (アイン変換)

Swapping face using FaceMesh. (could be used to unveil masked faces)

00_doc/demo_00.jpg 00_doc/demo_03.jpg

Tested Environment

Computer

  • Windows 10 (x64) + Visual Studio 2019
    • Intel Core i7-6700 @ 3.4GHz
  • It's not tested, but this project should run on Linux (x64, aarch64)

Deep Learning Inference Framework

  • TensorFlow Lite with XNNPACK delegate

How to Build and Run

Requirements

  • OpenCV 4.x
  • CMake

Download

  • Get source code
    • If you use Windows, you can use Git Bash
    git clone https://github.com/iwatake2222/aiine_transform.git
    cd aiine_transform
    git submodule update --init --recursive --recommend-shallow --depth 1
    cd inference_helper/third_party/tensorflow
    chmod +x tensorflow/lite/tools/make/download_dependencies.sh
    tensorflow/lite/tools/make/download_dependencies.sh
  • Download prebuilt library

Windows (Visual Studio)

  • Configure and Generate a new project using cmake-gui for Visual Studio 2019 64-bit
    • Where is the source code : path-to-cloned-folder
    • Where to build the binaries : path-to-build (any)
  • Open main.sln
  • Set main project as a startup project, then build and run!
  • Note:
    • Running with Debug causes exception, so use Release or RelWithDebInfo if you use TensorFlow Lite
    • You may need to modify cmake setting for TensorRT for your environment

Linux

mkdir build && cd build
cmake ..
make
./main

Usage

./main [input]
 - input:
    - use the default image file set in source code (main.cpp): blank
        - ./main
     - use video file: *.mp4, *.avi, *.webm
        - ./main test.mp4
     - use image file: *.jpg, *.png, *.bmp
        - ./main test.jpg
    - use camera: number (e.g. 0, 1, 2, ...)
        - ./main 0
    - use camera via gstreamer on Jetson: jetson
        - ./main jetson

Control

  • '0' key: Change masking mode
  • '1' key: Switch main image
  • 'f' key: Capture face image
  • 'g' key: Read face image

Model Information

Details

License

  • Copyright 2021 iwatake2222
  • Licensed under the Apache License, Version 2.0

Acknowledgements

I utilized the following OSS in this project. I appreciate your great works, thank you very much.

Code, Library

Model

Special thanks

Image Files

Owner
iwatake
iwatake
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022