Experiment about Deep Person Re-identification with EfficientNet-v2

Overview

deep-efficient-person-reid

Experiment for an uni project with strong baseline for Person Re-identification task.

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.


Pipeline

pipeline


Implementation Details

  • Random Erasing to transform input images.
  • EfficientNet-v2 / Resnet50 / Resnet50-IBN-A as backbone.
  • Stride = 1 for last convolution layer. Embedding size for Resnet50 / Resnet50-IBN-A is 2048, while for EfficientNet-v2 is 1280. During inference, embedding features will run through a batch norm layer, as known as a bottleneck for better normalization.
  • Loss function combining 3 losses:
    1. Triplet Loss with Hard Example Mining.
    2. Classification Loss (Cross Entropy) with Label Smoothing.
    3. Centroid Loss - Center Loss for reducing the distance of embeddings to its class center. When combining it with Classification Loss, it helps preventing embeddings from collapsing.
  • The default optimizer is AMSgrad with base learning rate of 3.5e-4 and multistep learning rate scheduler, decayed at epoch 30th and epoch 55th. Besides, we also apply mixed precision in training.
  • In both datasets, pretrained models were trained for 60 epochs and non-pretrained models were trained for 100 epochs.

Source Structure

.
├── config                  # hyperparameters settings
│   └── ...                 # yaml files
├
├── datasets                # data loader
│   └── ...           
├
├── market1501              # market-1501 dataset
|
├── cuhk03_release          # cuhk03 dataset
|
├── samplers                # random samplers
│   └── ...
|
├── loggers                 # test weights and visualization results      
|   └── runs
|   
├── losses                  # loss functions
│   └── ...   
|
├── nets                    # models
│   └── bacbones            
│       └── ... 
│   
├── engine                  # training and testing procedures
│   └── ...    
|
├── metrics                 # mAP and re-ranking
│   └── ...   
|
├── utils                   # wrapper and util functions 
│   └── ...
|
├── train.py                # train code 
|
├── test.py                 # test code 
|
├── visualize.py            # visualize results 

Pretrained Models (on ImageNet)

  • EfficientNet-v2: link
  • Resnet50-IBN-A: link

Notebook

  • Notebook to train, inference and visualize: Notebook

Setup


  • Install dependencies, change directory to dertorch:
pip install -r requirements.txt
cd dertorch/

  • Modify config files in /configs/. You can play with the parameters for better training, testing.

  • Training:
python train.py --config_file=name_of_config_file
Ex: python train.py --config_file=efficientnetv2_market

  • Testing: Save in /loggers/runs, for example the result from EfficientNet-v2 (Market-1501): link
python test.py --config_file=name_of_config_file
Ex: python test.py --config_file=efficientnetv2_market

  • Visualization: Save in /loggers/runs/results/, for example the result from EfficienNet-v2 (Market-1501): link
python visualize.py --config_file=name_of_config_file
Ex: python visualize.py --config_file=efficientnetv2_market

Examples


Query image 1 query1


Result image 1 result1


Query image 2 query2


Result image 2 result2


Results

  • Market-1501
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) 256x128 51.8 74.0 88.2 93.0 link
EfficientNet-v2 (non-pretrained) 256x128 56.5 78.5 91.1 94.4 link
Resnet50-IBN-A 256x128 77.1 90.7 97.0 98.4 link
EfficientNet-v2 256x128 69.7 87.1 95.3 97.2 link
Resnet50-IBN-A + Re-ranking 256x128 89.8 92.1 96.5 97.7 link
EfficientNet-v2 + Re-ranking 256x128 85.6 89.9 94.7 96.2 link

  • CUHK03:
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) ... ... ... ... ... ...
EfficientNet-v2 (non-pretrained) 256x128 10.1 10.1 21.1 29.5 link
Resnet50-IBN-A 256x128 41.2 41.8 63.1 71.2 link
EfficientNet-v2 256x128 40.6 42.9 63.1 72.5 link
Resnet50-IBN-A + Re-ranking 256x128 55.6 51.2 64.0 72.0 link
EfficientNet-v2 + Re-ranking 256x128 56.0 51.4 64.7 73.4 link

The results from EfficientNet-v2 models might be better if fine-tuning properly and longer training epochs, while here we use the best parameters for the ResNet models (on Market-1501 dataset) from this paper and only trained for 60 - 100 epochs.


Citation

@article{DBLP:journals/corr/abs-2104-13643,
  author    = {Mikolaj Wieczorek and
               Barbara Rychalska and
               Jacek Dabrowski},
  title     = {On the Unreasonable Effectiveness of Centroids in Image Retrieval},
  journal   = {CoRR},
  volume    = {abs/2104.13643},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13643},
  archivePrefix = {arXiv},
  eprint    = {2104.13643},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13643.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}

Adapted from: michuanhaohao

Owner
lan.nguyen2k
Tensor Boy
lan.nguyen2k
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022