SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

Related tags

Deep LearningSAT
Overview

SAT: 2D Semantics Assisted Training for 3D Visual Grounding

SAT: 2D Semantics Assisted Training for 3D Visual Grounding

by Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo

IEEE International Conference on Computer Vision (ICCV), 2021, Oral

Introduction

We propose 2D Semantics Assisted Training (SAT) that assists 3D visual grounding with 2D semantics. SAT helps 3D tasks with 2D semantics in training but does not require 2D inputs during inference. For more details, please refer to our paper.

Citation

@inproceedings{yang2021sat,
  title={SAT: 2D Semantics Assisted Training for 3D Visual Grounding},
  author={Yang, Zhengyuan and Zhang, Songyang and Wang, Liwei and Luo, Jiebo},
  booktitle={ICCV},
  year={2021}
}

Prerequisites

  • Python 3.6.9 (e.g., conda create -n sat_env python=3.6.9 cudatoolkit=10.0)
  • Pytorch 1.2.0 (e.g., conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch)
  • Install other common packages (numpy, pytorch_transformers, etc.)
  • Please refer to setup.py (From ReferIt3D).

Installation

  • Clone the repository

    git clone https://github.com/zyang-ur/SAT.git
    cd SAT
    pip install -e .
    
  • To use a PointNet++ visual-encoder you need to compile its CUDA layers for PointNet++: Note: To do this compilation also need: gcc5.4 or later.

    cd external_tools/pointnet2
    python setup.py install
    

Data

ScanNet

First you should download the train/val scans of ScanNet if you do not have them locally. Please refer to the instructions from referit3d for more details. The output is the scanfile keep_all_points_00_view_with_global_scan_alignment.pkl/keep_all_points_with_global_scan_alignment.pkl.

Ref3D Linguistic Data

You can dowload the Nr3D and Sr3D/Sr3D+ from Referit3D, and send the file path to referit3D-file.

SAT Processed 2D Features

You can download the processed 2D object image features from here. The cached feature should be placed under the referit3d/data folder, or match the cache path in the dataloader. The feature extraction code will be cleaned and released in the future. Meanwhile, feel free to contact me if you need that before the official release.

Training

Please reference the following example command on Nr3D. Feel free to change the parameters. Please reference arguments for valid options.

cd referit3d/scripts
scanfile=keep_all_points_00_view_with_global_scan_alignment.pkl ## keep_all_points_with_global_scan_alignment if include Sr3D
python train_referit3d.py --patience 100 --max-train-epochs 100 --init-lr 1e-4 --batch-size 16 --transformer --model mmt_referIt3DNet -scannet-file $scanfile -referit3D-file $nr3dfile_csv --log-dir log/$exp_id --n-workers 2 --gpu 0 --unit-sphere-norm True --feat2d clsvecROI --context_2d unaligned --mmt_mask train2d --warmup

Evaluation

Please find the pretrained models here (clsvecROI on Nr3D). A known issue here.

cd referit3d/scripts
python train_referit3d.py --transformer --model mmt_referIt3DNet -scannet-file $scanfile -referit3D-file $nr3dfile --log-dir log/$exp_id --n-workers 2 --gpu $gpu --unit-sphere-norm True --feat2d clsvecROI --mode evaluate --pretrain-path $pretrain_path/best_model.pth

Credits

The project is built based on the following repository:

Part of the code or models are from ScanRef, MMF, TAP, and ViLBERT.

Owner
Zhengyuan Yang
Zhengyuan Yang
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022