Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

Overview

License: CC BY 4.0 firebase-hosting test-and-format

federated is the source code for the Bachelor's Thesis

Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU)

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples, without exchanging them. In this project, the decentralized data is the MIT-BIH Arrhythmia Database.

Table of Contents

Features

  • ML pipelines using centralized learning or federated learning.
  • Support for the following aggregation methods:
    • Federated Stochastic Gradient Descent (FedSGD)
    • Federated Averaging (FedAvg)
    • Differentially-Private Federated Averaging (DP-FedAvg)
    • Federated Averaging with Homomorphic Encryption
    • Robust Federated Aggregation (RFA)
  • Support for the following models:
    • A simple softmax regressor
    • A feed-forward neural network (ANN)
    • A convolutional neural network (CNN)
  • Model compression in federated learning.

Installation

Prerequisites

Initial Setup

1. Cloning federated

$ git clone https://github.com/dilawarm/federated.git
$ cd federated

2. Getting the Dataset

To download the MIT-BIH Arrhythmia Database dataset used in this project, go to https://www.kaggle.com/shayanfazeli/heartbeat and download the files

  • mitbih_train.csv
  • mitbih_test.csv

Then write:

mkdir data
mkdir data/mitbih

and move the downloaded data into the data/mitbih folder.

Installing federated locally

1. Install the Python development environment

On Ubuntu:

$ sudo apt update
$ sudo apt install python3-dev python3-pip  # Python 3.8
$ sudo apt install build-essential          # make
$ sudo pip3 install --user --upgrade virtualenv

On macOS:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ export PATH="/usr/local/bin:/usr/local/sbin:$PATH"
$ brew update
$ brew install python  # Python 3.8
$ brew install make    # make
$ sudo pip3 install --user --upgrade virtualenv

2. Create a virtual environment

$ virtualenv --python python3 "venv"
$ source "venv/bin/activate"
(venv) $ pip install --upgrade pip

3. Install the dependencies

(venv) $ make install

4. Test TensorFlow Federated

(venv) $ python -c "import tensorflow_federated as tff; print(tff.federated_computation(lambda: 'Hello World')())"

Installing with Docker (optional)

Build and run image from Dockerfile

$ make docker

Running experiments with federated

federated has a client program, where one can initialize the different pipelines and train models with centralized or federated learning. To run this client program:

(venv) $ make help

This will display a list of options:

usage: python -m federated.main [-h] -l  -n  [-e] [-op] [-b] [-o] -m  [-lr]

Experimentation pipeline for federated 🚀

optional arguments:
  -b , --batch_size     The batch size. (default: 32)
  -e , --epochs         Number of global epochs. (default: 15)
  -h, --help            show this help message and exit
  -l , --learning_approach 
                        Learning apporach (centralized, federated). (default: None)
  -lr , --learning_rate 
                        Learning rate for server optimizer. (default: 1.0)
  -m , --model          The model to be trained with the learning approach (ann, softmax_regression, cnn). (default: None)
  -n , --experiment_name 
                        The name of the experiment. (default: None)
  -o , --output         Path to the output folder where the experiment is going to be saved. (default: history)
  -op , --optimizer     Server optimizer (adam, sgd). (default: sgd)

Here is an example on how to train a cnn model with federated learning for 10 global epochs using the SGD server-optimizer with a learning rate of 0.01:

(venv) $ python -m federated.main --learning_approach federated --model cnn --epochs 10 --optimizer sgd --learning_rate 0.01 --experiment_name experiment_name --output path/to/experiments

Running the command illustrated above, will display a list of input fields where one can fill in more information about the training configuration, such as aggregation method, if differential privacy should be used etc. Once all training configurations have been decided, the pipeline will be initialized. All logs and training configurations will be stored in the folder path/to/experiments/logdir/experiment_name.

Analyzing experiments with federated

TensorBoard

To analyze the results with TensorBoard:

(venv) $ tensorboard --logdir=path/to/experiments/logdir/experiment_name --port=6060

Jupyter Notebook

To analyze the results in the ModelAnalysis notebook, open the notebook with your editor. For example:

(venv) $ code notebooks/ModelAnalysis.ipynb

Replace the first line in this notebook with the absolute path to your experiment folder, and run the notebook to see the results.

Documentation

The documentation can be found here.

To generate the documentation locally:

(venv) $ cd docs
(venv) $ make html
(venv) $ firefox _build/html/index.html

Tests

The unit tests included in federated are:

  • Tests for data preprocessing
  • Tests for different machine learning models
  • Tests for the training loops
  • Tests for the different privacy algorithms such as RFA.

To run all the tests:

(venv) $ make tests

To generate coverage after running the tests:

(venv) $ coverage html
(venv) $ firefox htmlcov/index.html

See the Makefile for more commands to test the modules in federated separately.

How to Contribute

  1. Clone repo and create a new branch:
$ git checkout https://github.com/dilawarm/federated.git -b name_for_new_branch
  1. Make changes and test.
  2. Submit Pull Request with comprehensive description of changes.

Owners

Pernille Kopperud Dilawar Mahmood

Enjoy! 🙂

You might also like...
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

Comments
  • Replace Makefile with .sh

    Replace Makefile with .sh

    It's not necessary to install make to run the commands. The project should use a .sh file instead so that users do not have to install make (one less dependency).

    enhancement 
    opened by dilawarm 0
Releases(v1.0)
Owner
Dilawar Mahmood
3rd year Computer science student at Norwegian University of Science and Technology
Dilawar Mahmood
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022