We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Related tags

Deep LearningGDT
Overview

Multi-Modal Self-Supervision using GDT and StiCa

This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized Data Transformations and Space-Time Crop & Attend: Improving Cross-modal Video Representation Learning. In this repository, we provide PyTorch code for pretraining and testing our proposed GDT and StiCa models.

If you find GDT and STiCA useful in your research, please use the following BibTeX entries for citation.

@misc{patrick2020multimodal,
      title={Multi-modal Self-Supervision from Generalized Data Transformations}, 
      author={Mandela Patrick and Yuki M. Asano and Polina Kuznetsova and Ruth Fong and João F. Henriques and Geoffrey Zweig and Andrea Vedaldi},
      year={2021},
      booktitle={International Conference on Computer Vision (ICCV)},
}

@misc{m2021spacetime,
    title={Space-Time Crop & Attend: Improving Cross-modal Video Representation Learning},
    author={Mandela Patrick and Yuki M. Asano and Bernie Huang and Ishan Misra and Florian Metze and Joao Henriques and Andrea Vedaldi},
    year={2021},
    booktitle={International Conference on Computer Vision (ICCV)},
}

Highlights

(1) GDT: Formulate and generalize most pretext tasks in a NCE objective.

Using this formulation, we test various pretext tasks previously unexplored and achieve SOTA downstream performance.

(2) STiCA: Importance of incorporating within-modal invariance in cross-modal learning

We show how to efficiently incorporate within-modal invariance learning using feature crops and achieve SOTA downstream performance.

Model Zoo

We provide GDT models pretrained on Kinetics-400 (K400), HowTo100M (HT100M), and Instagram-65M (IG65M) datasets, and StiCa models pretrained on Kinetics-400 (K400).

name dataset # of frames spatial crop HMDB51 Top1 UCF101 Top1 url
GDT K400 30 112 62.3 90.9 model
GDT HT100M 30 112 94.1 67.4 model
GDT IG65M 30 112 72.8 95.2 model
name dataset # of frames spatial crop HMDB51 Top1 UCF101 Top1 url
STiCA K400 60 112 67.0 93.1 Coming Soon

Installation

This repo was tested with Ubuntu 16.04.5 LTS, Python 3.7.5, PyTorch 1.3.1, Torchvision 0.4.1, and CUDA 10.0.

Step 1

  • Clone this repo to your local machine

Step 2

  • Install required packages using conda env create -f environment.yml

Step 3

  • Activate conda environment using conda activate GDT

Step 4

  • Install kornia library pip install kornia==0.1.4

Step 5

  • See below for how to pretrain GDT / StiCa or benchmark pretrained models

Data Preperation

For Kinetics-400/600, HMDB-51 and UCF-101 datasets:

  1. Ensure all datasets are in the format:
  2. $ROOT_DIR/$SPLIT/$CLASS/*
    

To prepare How-To-100M dataset, do the following:

  1. Download the word2vec matrix and dictionary, unzip the file, and place in datasets/data folder.
  2. wget https://www.rocq.inria.fr/cluster-willow/amiech/word2vec.zip
    unzip word2vec.zip
    mv word2vec.pth datasets/data/word2vec.pth 
    
  3. Download the csv files of captions.
  4. wget https://www.rocq.inria.fr/cluster-willow/amiech/howto100m/howto100m_captions.zip
    unzip howto100m_captions.zip
    
  5. Download the preprocessed HowTo100M videos (12TB in total) by filling this Google form: https://forms.gle/hztrfnFQUJWBtiki8.

Usage

GDT pretraining

To pretrain audio-visual GDT on K-400

Multi-node distributed training with SLURM cluster:

sbatch pretraining_scripts/pretrain_gdt_k400.sh ${HYPOTHESIS_DESC} ${HYPOTHESIS} 

Single-node distributed training:

python -m torch.distributed.launch --master_port=$RANDOM --nproc_per_node=2 --use_env main_gdt.py --batch_size $BS --lr $LR --hypothesis {1,2,3,4,5,6,7,8,9}

To pretrain video-text GDT on HT100M

Multi-node training with SLURM cluster:

sbatch pretraining_scripts/pretrain_gdt_ht100m.sh ${HYPOTHESIS_DESC} ${HYPOTHESIS} 

Single-node distributed training:

python -m torch.distributed.launch --master_port=$RANDOM --nproc_per_node=2 --use_env main_gdt.py --batch_size $BS --lr $LR --hypothesis {1,2,3,4,5,6,7,8,9} --dataset ht100m --decode_audio False --model vid_text_gdt --sample_rate 2

$HYPOTHESIS refers to the hypotheses explored in GDT. We experiment with the following:

1 - cross-modal baseline (cross_modal_baseline)
2 - variant to time reversal (v_reversal)
3 - invariant to time reversal (i_reversal)
4 - variant to time shift (v_shift)
5 - invariant to time shift (i_shift)
6 - variant to time reversal and variant to time shift (v_reversal_v_shift)
7 - invariant to time reversal, variant to time shift (i_reversal_v_shift)
8 - variant to time reversal, and invariant to time shift (v_reversal_i_shift)
9 - invariant to time reversal, invariant to time shift (i_reversal_i_shift)

Please modify the following in SLURM script:

  • SBATCH directives (e.g. partition, nodes, constraint,)
  • SAV_FOLDER
  • --root_dir (path of K-400 / HT100M train directory)

All experiments were run with 8 nodes (64 GPUs, volta32). Please scale batch-size and learning-rate appropriately.

STiCA pretraining

To pretrain audio-visual STiCA on K-400

Multi-node training with SLURM cluster:

sbatch scripts/pretrain_stica.sh $NUM_FRAMES $AUD_NUM_SEC $NUM_LARGE_CROPS $NUM_SMALL_CROPS $NUM_SMALL_TCROPS $NUM_LARGE_TCROPS $NUM_LAYER

Single-node distributed training:

python -m torch.distributed.launch --master_port=$RANDOM --nproc_per_node=2 --use_env main_stica.py --batch_size $BS --base_lr $LR

Hyper-parameters:

NUM_FRAMES - number of frames (e.g. 30)
AUD_NUM_SEC - number of seconds (30f: 1sec, 60f: 2s)
NUM_LARGE_CROPS - num of large feature spatial crops (e.g. 2)
NUM_SMALL_CROPS - num of small feature spatial crops (e.g. 4)
NUM_SMALL_TCROPS - num of large feature spatial crops (e.g. 1)
NUM_LARGE_TCROPS - num of small feature spatial crops (e.g. 2)
NUM_LAYER - num of transformer pooling layers (0 == GAP, >1 is num. of transformer layers)
e.g. sbatch scripts/pretrain_stica.sh 30 1 2 4 1 2 0

Please modify the following in SLURM script:

  • SBATCH directives (e.g. partition, nodes, constraint,)
  • SAV_FOLDER
  • --root_dir (path of K-400 / HT100M train directory)

All experiments were run with 8 nodes (64 GPUs, volta32). Please scale batch-size and learning-rate appropriately.

Benchmarking

To evaluate pretraining on video action recognition on UCF-101 and HMDB-51 datasets,

Locally:

python3 eval_video.py --dataset {ucf101, hmdb51} --fold {1,2,3} --weights-path {WEIGHTS_PATH} --model ${vid_text_gdt, stica, av_gdt}

On SLURM:

bash scripts/eval.sh ${WEIGHTS_PATH} ${OUTPUT_DIR} ${CKPT_NUM} ${CLIP_LEN} ${vid_text_gdt, stica, av_gdt} ${1, 2, 3}

Modify --root_dir, --ucf101-annotation-path, and --hmdb51-annotation-path in eval_video.py.

License

The majority of this work is licensed under CC-NC 4.0 International license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Owner
Facebook Research
Facebook Research
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023