NP DRAW paper released code

Related tags

Deep LearningNPDRAW
Overview

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation

This repo contains the official implementation for the NP-DRAW paper.

by Xiaohui Zeng, Raquel Urtasun, Richard Zemel, Sanja Fidler, and Renjie Liao

Abstract

In this paper, we present a non-parametric structured latent variable model for image generation, called NP-DRAW, which sequentially draws on a latent canvas in a part-by-part fashion and then decodes the image from the canvas. Our key contributions are as follows.

  1. We propose a non-parametric prior distribution over the appearance of image parts so that the latent variable “what-to-draw” per step becomes a categorical random variable. This improves the expressiveness and greatly eases the learning compared to Gaussians used in the literature.
  2. We model the sequential dependency structure of parts via a Transformer, which is more powerful and easier to train compared to RNNs used in the literature.
  3. We propose an effective heuristic parsing algorithm to pre-train the prior. Experiments on MNIST, Omniglot, CIFAR-10, and CelebA show that our method significantly outperforms previous structured image models like DRAW and AIR and is competitive to other generic generative models.

Moreover, we show that our model’s inherent compositionality and interpretability bring significant benefits in the low-data learning regime and latent space editing.

Generation Process

prior

Our prior generate "whether", "where" and "what" to draw per step. If the "whether-to-draw" is true, a patch from the part bank is selected and pasted to the canvas. The final canvas is refined by our decoder.

More visualization of the canvas and images

twitter-1page

Latent Space Editting

We demonstrate the advantage of our interpretable latent space via interactively editing/composing the latent canvas.

edit

  • Given images A and B, we encode them to obtain the latent canvases. Then we compose a new canvas by placing certain semantically meaningful parts (e.g., eyeglasses, hair, beard, face) from canvas B on top of canvas A. Finally, we decode an image using the composed canvas.

Dependencies

# the following command will install torch 1.6.0 and other required packages 
conda env create -f environment.yml # edit the last link in the yml file for the directory
conda activate npdraw 

Pretrained Model

Pretrained model will be available here To use the pretrained models, download the zip file under exp folder and unzip it. For expample, with the cifar.zip file we will get ./exp/cifarcm/cat_vloc_at/ and ./exp/cnn_prior/cifar/.

Testing the pretrained NPDRAW model:

  • before running the evaluation, please also download the stats on the test set from google-drive, and run
mkdir datasets 
mv images.tar.gz datasets 
cd datasets 
tar xzf images.tar.gz 

The following commands test the FID score of the NPDRAW model.

# for mnist
bash scripts/local_sample.sh exp/stoch_mnist/cat_vloc_at/0208/p5s5n36vitBinkl1r1E3_K50w5sc0_gs_difflr_b500/E00550.pth # FID 2.55

# for omniglot
bash scripts/local_sample.sh exp/omni/cat_vloc_at/0208/p5s5n36vitBinkl1r1E3_K50w5sc0_gs_difflr_b500/ckpt_epo799.pth # FID 5.53

# for cifar
bash scripts/local_sample.sh exp/cifarcm/cat_vloc_at/0208/p4s4n64_vitcnnLkl11E3_K200w4sc0_gs_difflr_b150/ckpt_epo499.pth #

# for celeba
bash scripts/local_sample.sh exp/celebac32/cat_vloc_at/0208/p4s4n64_vitcnnLkl0e531E3_K200w4sc0_gs_difflr_b150/ckpt_epo199.pth # FID 41.29

Training

Use ./scripts/train_$DATASET.sh to train the model.


  • The code in tool/pytorch-fid/ is adapated from here
  • The transformer code is adapted from here
Owner
ZENG Xiaohui
ZENG Xiaohui
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022