ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Overview

Sign-Agnostic Convolutional Occupancy Networks

Paper | Supplementary | Video | Teaser Video | Project Page

This repository contains the implementation of the paper:

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Network ICCV 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{tang2021sign,
  title={SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks},
  author={Tang, Jiapeng and Lei, Jiabao and Xu, Dan and Ma, Feiying and Jia, Kui and Zhang, Lei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact Jiapeng Tang for questions, comments and reporting bugs.

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sa_conet using

conda env create -f environment.yaml
conda activate sa_conet

Note: you might need to install torch-scatter mannually following the official instruction:

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Reconstruct Large-Scale Matterport3D Scene

You can now quickly test our code on the real-world scene shown in the teaser. To this end, simply run:

python generate_optim_largescene.py configs/pointcloud_crop/demo_matterport.yaml

This script should create a folder out/demo_matterport/generation where the output meshes and input point cloud are stored.

Note: This experiment corresponds to our fully convolutional model, which we train only on the small crops from our synthetic room dataset. This model can be directly applied to large-scale real-world scenes with real units and generate meshes in a sliding-window manner, as shown in the teaser. More details can be found in section D.1 of our supplementary material. For training, you can use the script pointcloud_crop/room_grid64.yaml.

Reconstruct Synthetic Indoor Scene

You can also test on our synthetic room dataset by running:

python generate_optim_scene.py configs/pointcloud/demo_syn_room.yaml

Reconstruct ShapeNet Object

You can also test on the ShapeNet dataset by running:

python generate_optim_object.py configs/pointcloud/demo_shapenet.yaml --this file needs to be created.

Dataset

To evaluate a pretrained model or train a new model from scratch, you have to obtain the respective dataset. In this paper, we consider 4 different datasets:

ShapeNet

You can download the dataset (73.4 GB) by running the script from Occupancy Networks. After, you should have the dataset in data/ShapeNet folder.

Synthetic Indoor Scene Dataset

For scene-level reconstruction, we use a synthetic dataset of 5000 scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table). There are also ground planes and randomly sampled walls.

You can download the preprocessed data (144 GB) by ConvONet using

bash scripts/download_data.sh

This script should download and unpack the data automatically into the data/synthetic_room_dataset folder.
Note: The point-wise semantic labels are also provided in the dataset, which might be useful.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

  • download the ShapeNet dataset as described above.
  • check scripts/dataset_synthetic_room/build_dataset.py, modify the path and run the code.

Matterport3D

Download Matterport3D dataset from the official website. And then, use scripts/dataset_matterport/build_dataset.py to preprocess one of your favorite scenes. Put the processed data into data/Matterport3D_processed folder.

ScanNet

Download ScanNet v2 data from the official ScanNet website. Then, you can preprocess data with: scripts/dataset_scannet/build_dataset.py and put into data/ScanNet folder.
Note: Currently, the preprocess script normalizes ScanNet data to a unit cube for the comparison shown in the paper, but you can easily adapt the code to produce data with real-world metric. You can then use our fully convolutional model to run evaluation in a sliding-window manner.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to perform sign-agnostic optimzation, run the pre-trained models, and train new models from scratch.

Mesh Generation for ConvOnet

To generate meshes using a pre-trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use pre-trained models The easiest way is to use a pre-trained model. You can do this by using one of the config files under the pretrained folders.

For example, for 3D reconstruction from noisy point cloud with our 3-plane model on the synthetic room dataset, you can simply run:

python generate.py configs/pointcloud/pretrained/room_3plane.yaml

The script will automatically download the pretrained model and run the mesh generation. You can find the outputs in the out/.../generation_pretrained folders

Note that the config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

The provided following pretrained models are:

pointcloud/shapenet_3plane.pt
pointcloud/room_grid64.pt
pointcloud_crop/room_grid64.pt

Sign-Agnostic Optimization of ConvONet

Before the sign-agnostic, test-time optimization on the Matterport3D dataset, we firstly run the below script to preprocess the testset.

python scripts/dataset_matterport/make_cropscene_dataset.py --in_folder $in_folder --out_folder $out_folder --do_norm

Please specify the in_folder and out_folder.

To perform sign-agnostic, test-time optimization for more accurate surface mesh generation using a pretrained model, use

python generate_optim_object.py configs/pointcloud/test_optim/shapenet_3plane.yaml
python generate_optim_scene.py configs/pointcloud/test_optim/room_grid64.yaml
python generate_optim_largescene.py configs/pointcloud_crop/test_optim/room_grid64.yaml

Evaluation

For evaluation of the models, we provide the scripts eval_meshes.py and eval_meshes_optim.py. You can run it using:

python eval_meshes.py CONFIG.yaml
python eval_meshes_optim.py CONFIG.yaml

The scripts takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Training

Finally, to pretrain a new network from scratch, run:

python train.py CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Acknowledgements

Most of the code is borrowed from ConvONet. We thank Songyou Peng for his great works.

MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022