MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Overview

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv)

This is a Pytorch implementation of our paper. We present Vision Permutator, a conceptually simple and data efficient MLP-like architecture for visual recognition. We show that our Vision Permutators are formidable competitors to convolutional neural networks (CNNs) and vision transformers.

We hope this work could encourage researchers to rethink the way of encoding spatial information and facilitate the development of MLP-like models.

Compare

Basic structure of the proposed Permute-MLP layer. The proposed Permute-MLP layer contains three branches that are responsible for encoding features along the height, width, and channel dimensions, respectively. The outputs from the three branches are then combined using element-wise addition, followed by a fully-connected layer for feature fusion.

Our code is based on the pytorch-image-models, Token Labeling, T2T-ViT

Comparison with Recent MLP-like Models

Model Parameters Throughput Image resolution Top 1 Acc. Download Logs
EAMLP-14 30M 711 img/s 224 78.9%
gMLP-S 20M - 224 79.6%
ResMLP-S24 30M 715 img/s 224 79.4%
ViP-Small/7 (ours) 25M 719 img/s 224 81.5% link
EAMLP-19 55M 464 img/s 224 79.4%
Mixer-B/16 59M - 224 78.5%
ViP-Medium/7 (ours) 55M 418 img/s 224 82.7% link
gMLP-B 73M - 224 81.6%
ResMLP-B24 116M 231 img/s 224 81.0%
ViP-Large/7 88M 298 img/s 224 83.2% link

The throughput is measured on a single machine with V100 GPU (32GB) with batch size set to 32.

Training ViP-Small/7 takes less than 30h on ImageNet for 300 epochs on a node with 8 A100 GPUs.

Requirements

torch>=1.4.0
torchvision>=0.5.0
pyyaml
timm==0.4.5
apex if you use 'apex amp'

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Training

Command line for training on 8 GPUs (V100)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 /path/to/imagenet --model vip_s7 -b 256 -j 8 --opt adamw --epochs 300 --sched cosine --apex-amp --img-size 224 --drop-path 0.1 --lr 2e-3 --weight-decay 0.05 --remode pixel --reprob 0.25 --aa rand-m9-mstd0.5-inc1 --smoothing 0.1 --mixup 0.8 --cutmix 1.0 --warmup-lr 1e-6 --warmup-epochs 20

Reference

You may want to cite:

@misc{hou2021vision,
    title={Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition},
    author={Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng},
    year={2021},
    eprint={2106.12368},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

License

This repository is released under the MIT License as found in the LICENSE file. For commercial use, please contact with the authors.

Owner
Qibin (Andrew) Hou
Research fellow at NUS.
Qibin (Andrew) Hou
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021