NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Overview

Real-ESRGAN ncnn Vulkan

CI License: MIT Open issue Closed issue

This project is the ncnn implementation of Real-ESRGAN. Real-ESRGAN ncnn Vulkan heavily borrows from realsr-ncnn-vulkan. Many thanks to nihui, ncnn and realsr-ncnn-vulkan 😁

Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration. We also optimize it for anime images.

Contents


If Real-ESRGAN is helpful in your photos/projects, please help to this repo or recommend it to your friends. Thanks 😊
Other recommended projects:
▶️ Real-ESRGAN: A practical algorithm for general image restoration
▶️ GFPGAN: A practical algorithm for real-world face restoration
▶️ BasicSR: An open-source image and video restoration toolbox
▶️ facexlib: A collection that provides useful face-relation functions.
▶️ HandyView: A PyQt5-based image viewer that is handy for view and comparison.

📖 Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

[Paper]   [Project Page]   [Demo]
Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan
Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

TODO List

  • Support further cheap arbitrary resize (e.g., bicubic, bilinear) for the model outputs
  • Bug: Some PCs will output black images
  • Add the guidance for ncnn model conversion
  • Support face restoration - GFPGAN

💻 Usages

Example Command

realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrgan-x4plus-anime

Full Usages

Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...

  -h                   show this help
  -v                   verbose output
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (4, default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        folder path to pre-trained models(default=models)
  -n model-name        model name (default=realesrgan-x4plus, can be realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
  -g gpu-id            gpu device to use (default=0) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode
  -f format            output image format (jpg/png/webp, default=ext/png)
  • input-path and output-path accept either file path or directory path
  • scale = scale level, 4 = upscale 4x
  • tile-size = tile size, use smaller value to reduce GPU memory usage, default selects automatically
  • load:proc:save = thread count for the three stages (image decoding + model upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
  • format = the format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter crash or error, try to upgrade your GPU driver

🌏 Other Open-Source Code Used

📜 BibTeX

@InProceedings{wang2021realesrgan,
    author    = {Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
    title     = {Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
    booktitle = {International Conference on Computer Vision Workshops (ICCVW)},
    date      = {2021}
}

📧 Contact

If you have any question, please email [email protected] or [email protected].

Comments
  • problem running on aws

    problem running on aws

    I downloaded the ubuntu zip on a g3s.xlarge and the result is a black image. Is the zip missing files?

    
    ./realesrgan-ncnn-vulkan-v0.2.0-ubuntu/realesrgan-ncnn-vulkan -i input.jpg -o out/output.jpg -n realesrgan-x4plus -s 4 
    
    [0 Tesla M60]  queueC=0[16]  queueG=0[16]  queueT=1[2]
    [0 Tesla M60]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
    [0 Tesla M60]  fp16-p/s/a=1/1/0  int8-p/s/a=1/1/1
    [0 Tesla M60]  subgroup=32  basic=1  vote=1  ballot=1  shuffle=1
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  queueC=0[1]  queueG=0[1]  queueT=0[1]
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  fp16-p/s/a=1/1/0  int8-p/s/a=1/1/0
    [1 llvmpipe (LLVM 12.0.0, 256 bits)]  subgroup=8  basic=1  vote=1  ballot=1  shuffle=0
    fopen /home/ubuntu/realesrgan-ncnn-vulkan-v0.2.0-ubuntu/models/realesrgan-x4plus.param failed
    fopen /home/ubuntu/realesrgan-ncnn-vulkan-v0.2.0-ubuntu/models/realesrgan-x4plus.bin failed
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    0.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    4.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    8.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    12.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    16.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    20.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    25.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    29.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    33.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    37.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    41.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    45.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    50.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    54.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    58.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    62.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    66.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    70.83%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    75.00%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    79.17%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    83.33%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    87.50%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    91.67%
    find_blob_index_by_name data failed
    Try
    find_blob_index_by_name output failed
    Try
    95.83%
    
    opened by kmulvey 2
  • How do I switch from integrated gpu to nvedia gpu

    How do I switch from integrated gpu to nvedia gpu

    [0 Intel(R) UHD Graphics 630] queueC=0[1] queueG=0[1] queueT=0[1] [0 Intel(R) UHD Graphics 630] bugsbn1=0 bugbilz=3 bugcopc=0 bugihfa=0 [0 Intel(R) UHD Graphics 630] fp16-p/s/a=1/1/1 int8-p/s/a=1/1/1 [0 Intel(R) UHD Graphics 630] subgroup=32 basic=1 vote=1 ballot=1 shuffle=1

    When upscaling images it only uses integrated gpu I want to use my gtx 1650 how do I switch this?

    opened by csAshish 0
  • in directory mode, option to skip if destination already exist

    in directory mode, option to skip if destination already exist

    if you stop the upscaler while processing a directory and you have to restart it, it will start from the beginning and overwrite existing files

    overwriting in file mode is fine but should be an option for direcotry mode ... so I propose a flag to disable overwrite and skip if exist

    opened by 6543 0
  • models: consider adding into README how to get them.

    models: consider adding into README how to get them.

    Hey,

    Please consider adding to README a section how to get the pre-trained model files. Currently you'd need to extract them from the following links

    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip
    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth
    • https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth

    It took me a moment to figure out how to get a hold of them and I suspect many others would face similar challenge.

    opened by slashbeast 0
  • Segfault realesrnet-x4plus

    Segfault realesrnet-x4plus

    %  ./realesrgan-ncnn-vulkan -i FdLbqKcWIAAaCeY.jpeg  -o FdLbqKcWIAAaCeY.png -n realesrnet-x4plus
    zsh: segmentation fault  ./realesrgan-ncnn-vulkan -i FdLbqKcWIAAaCeY.jpeg -o FdLbqKcWIAAaCeY.png -n 
    
    opened by atomical 1
Owner
Xintao
Researcher at Tencent ARC Lab, (Applied Research Center)
Xintao
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022