DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

Related tags

Deep LearningDRLib
Overview

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos

A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos. With tensorflow1.14 and pytorch, add HER and PER, core codes based on https://github.com/openai/spinningup

Compared with spinning up, I delete multi-process and experimental grid wrapper, and our advantage is that it is convenient to debug with pycharm~

项目特点:

  1. tf1和pytorch两个版本的算法,前者快,后者新,任君选择;

  2. 在spinup的基础上,封装了DDPG, TD3, SAC等主流强化算法,相比原来的函数形式的封装,调用更方便,且加了pytorch的GPU调用

  3. 添加了HER和PER功能,非常适合做机器人相关任务的同学们;

  4. 去除了自动调参(ExperimentGrid)和多进程(MPI_fork)部分,适合新手在pycharm中debug,前者直接跑经常会报错~ 等我熟练了这两个,我再加上去,并附上详细教程;

  5. 最后,全网最详细的环境配置教程!亲测两个小时内,从零配置完全套环境!

  6. 求三连,不行求个star!

1. Installation

  1. Clone the repo and cd into it:

    git clone https://github.com/kaixindelele/DRLib.git
    cd DRLib
  2. Create anaconda DRLib_env env:

    conda create -n DRLib_env python=3.6.9
    source activate DRLib_env
  3. Install pip_requirement.txt:

    pip install -r pip_requirement.txt

    If installation of mpi4py fails, try the following command(Only this one can be installed successfully!):

    conda install mpi4py
  4. Install tensorflow-gpu=1.14.0

    conda install tensorflow-gpu==1.14.0 # if you have a CUDA-compatible gpu and proper drivers
  5. Install torch torchvision

    # CUDA 9.2
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 -c pytorch
    
    # CUDA 10.1
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
    
    # CUDA 10.2
    conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
    
    # CPU Only
    conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch
    
    # or pip install    
    pip --default-timeout=100 install torch -i  http://pypi.douban.com/simple  --trusted-host pypi.douban.com
    [pip install torch 在线安装!非离线!](https://blog.csdn.net/hehedadaq/article/details/111480313)
  6. Install mujoco and mujoco-py

    refer to: https://blog.csdn.net/hehedadaq/article/details/109012048
  7. Install gym[all]

    refer to https://blog.csdn.net/hehedadaq/article/details/110423154

2. Training models

  • Example 1. SAC-tf1-HER-PER with FetchPush-v1:
  1. modify params in arguments.py, choose env, RL-algorithm, use PER and HER or not, gpu-id, and so on.
  2. run with train_tf.py or train_torch.py
    python train_tf.py
  3. exp results to local:https://blog.csdn.net/hehedadaq/article/details/114045615
  4. plot results:https://blog.csdn.net/hehedadaq/article/details/114044217

3. File tree and introduction:

.
├── algos
│   ├── pytorch
│   │   ├── ddpg_sp
│   │   │   ├── core.py-------------It's copied directly from spinup, and modified some details.
│   │   │   ├── ddpg_per_her.py-----inherits from offPolicy.baseOffPolicy, can choose whether or not HER and PER
│   │   │   ├── ddpg.py-------------It's copied directly from spinup
│   │   │   ├── __init__.py
│   │   ├── __init__.py
│   │   ├── offPolicy
│   │   │   ├── baseOffPolicy.py----baseOffPolicy, can be used to DDPG/TD3/SAC and so on.
│   │   │   ├── norm.py-------------state normalizer, update mean/std with training process.
│   │   ├── sac_auto
│   │   ├── sac_sp
│   │   │   ├── core.py-------------likely as before.
│   │   │   ├── __init__.py
│   │   │   ├── sac_per_her.py
│   │   │   └── sac.py
│   │   └── td3_sp
│   │       ├── core.py
│   │       ├── __init__.py
│   │       ├── td3_gpu_class.py----td3_class modified from spinup
│   │       └── td3_per_her.py
│   └── tf1
│       ├── ddpg_sp
│       │   ├── core.py
│       │   ├── DDPG_class.py------------It's copied directly from spinup, and wrap algorithm from function to class.
│       │   ├── DDPG_per_class.py--------Add PER.
│       │   ├── DDPG_per_her_class.py----DDPG with HER and PER without inheriting from offPolicy.
│       │   ├── DDPG_per_her.py----------Add HER and PER.
│       │   ├── DDPG_sp.py---------------It's copied directly from spinup, and modified some details.
│       │   ├── __init__.py
│       ├── __init__.py
│       ├── offPolicy
│       │   ├── baseOffPolicy.py
│       │   ├── core.py
│       │   ├── norm.py
│       ├── sac_auto--------------------SAC with auto adjust alpha parameter version.
│       │   ├── core.py
│       │   ├── __init__.py
│       │   ├── sac_auto_class.py
│       │   ├── sac_auto_per_class.py
│       │   └── sac_auto_per_her.py
│       ├── sac_sp--------------------SAC with alpha=0.2 version.
│       │   ├── core.py
│       │   ├── __init__.py
│       │   ├── SAC_class.py
│       │   ├── SAC_per_class.py
│       │   ├── SAC_per_her.py
│       │   ├── SAC_sp.py
│       └── td3_sp
│           ├── core.py
│           ├── __init__.py
│           ├── TD3_class.py
│           ├── TD3_per_class.py
│           ├── TD3_per_her_class.py
│           ├── TD3_per_her.py
│           ├── TD3_sp.py
├── arguments.py-----------------------hyperparams scripts
├── drlib_tree.txt
├── HER_DRLib_exps---------------------demo exp logs
│   ├── 2021-02-21_HER_TD3_FetchPush-v1
│   │   ├── 2021-02-21_18-26-08-HER_TD3_FetchPush-v1_s123
│   │   │   ├── checkpoint
│   │   │   ├── config.json
│   │   │   ├── params.data-00000-of-00001
│   │   │   ├── params.index
│   │   │   ├── progress.txt
│   │   │   └── Script_backup.py
├── memory
│   ├── __init__.py
│   ├── per_memory.py--------------mofan version
│   ├── simple_memory.py-----------mofan version
│   ├── sp_memory.py---------------spinningup tf1 version, simple uniform buffer memory class.
│   ├── sp_memory_torch.py---------spinningup torch-gpu version, simple uniform buffer memory class.
│   ├── sp_per_memory.py-----------spinningup tf1 version, PER buffer memory class.
│   └── sp_per_memory_torch.py
├── pip_requirement.txt------------pip install requirement, exclude mujoco-py,gym,tf,torch.
├── spinup_utils-------------------some utils from spinningup, about ploting results, logging, and so on.
│   ├── delete_no_checkpoint.py----delete the folder where the experiment did not complete.
│   ├── __init__.py
│   ├── logx.py
│   ├── mpi_tf.py
│   ├── mpi_tools.py
│   ├── plot.py
│   ├── print_logger.py------------save the information printed by the terminal to the local log file。
│   ├── run_utils.py---------------now I haven't used it. I have to learn how to multi-process.
│   ├── serialization_utils.py
│   └── user_config.py
├── train_tf1.py--------------main.py for tf1
└── train_torch.py------------main.py for torch

4. HER introduction:

Refer to these code bases:

  1. It can be converged, but this code is too difficult. https://github.com/openai/baselines

  2. It can also converged, but only for DDPG-torch-cpu. https://github.com/sush1996/DDPG_Fetch

  3. It can not be converged, but this code is simpler. https://github.com/Stable-Baselines-Team/stable-baselines

4.1. My understanding and video:

种瓜得豆来解释her: 第一步在春天(state),种瓜(origin-goal)得豆,通过HER,把目标换成种豆,按照之前的操作,可以学会在春天种豆得豆; 第二步种米得瓜,学会种瓜得瓜; 即只要是智能体中间经历过的状态,都可以当做它的目标,进行学会。 即如果智能体能遍历所有的状态空间,那么它就可以学会达到整个状态空间。

https://www.bilibili.com/video/BV1BA411x7Wm

4.2. Key tricks for HER:

  1. state-normalize: success rate from 0 to 1 for FetchPush-v1 task.
  2. Q-clip: success rate from 0.5 to 0.7 for FetchPickAndPlace-v1 task.
  3. action_l2: little effect for Push task.

4.3. Performance about HER-DDPG with FetchPush-v1:

5. PER introduction:

refer to:off-policy全系列(DDPG-TD3-SAC-SAC-auto)+优先经验回放PER-代码-实验结果分析

6. Summary:

这个库我封装了好久,整个代码库简洁、方便、功能比较齐全,在环境配置这块几乎是手把手教程,希望能给大家节省一些时间~

从零开始配置,不到两小时,从下载代码库,到配置环境,到在自己的环境中跑通,全流程非常流畅。

6.1. 下一步添加的功能:

  1. PPO的封装;

  2. DQN的封装;

  3. 多进程的封装;

  4. ExperimentGrid的封装;

7. Contact:

深度强化学习-DRL:799378128

欢迎关注知乎帐号:未入门的炼丹学徒

CSDN帐号:https://blog.csdn.net/hehedadaq

A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022