The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

Related tags

Deep LearningSIDE
Overview

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation

The source code of our work "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022 img|center

Installation

Requirements

Data Preparation

KITTI

Download the train-val split of 3DOP and SubCNN and place the data as below

  ${SIDE_ROOT}
  |-- data
  `-- |-- kitti
      `-- |-- training
          |   |-- image_2
          |   |-- label_2
          |   |-- calib
          |-- ImageSets_3dop
          |   |-- test.txt
          |   |-- train.txt
          |   |-- val.txt
          |   |-- trainval.txt
          `-- ImageSets_subcnn
              |-- test.txt
              |-- train.txt
              |-- val.txt
              |-- trainval.txt

Training

To train the kitti 3D object detection with dla on 4 GPUs, run

python testTrain.py stereo --exp_id sub_dla34 --dataset kitti --kitti_split subcnn --batch_size 16 --num_epochs 70 --lr_step 45,60 --gpus 0,1,2,3

By default, pytorch evenly splits the total batch size to each GPUs. --master_batch allows using different batchsize for the master GPU, which usually costs more memory than other GPUs. If it encounters GPU memory out, using slightly less batch size with the same learning is fine.

If the training is terminated before finishing, you can use the same commond with --resume to resume training. It will found the lastest model with the same exp_id.

Evaluation

To evaluate the kitti dataset, first compile the evaluation tool (from here):

cd SIDE_ROOT/src/tools/kitti_eval
g++ -o evaluate_object_3d_offline evaluate_object_3d_offline.cpp -O3

Then run the evaluation with pretrained model:

python testVal.py stereo --exp_id sub_dla34 --dataset kitti --kitti_split 3dop --resume

to evaluate the 3DOP split. For the subcnn split, change --kitti_split to subcnn and load the corresponding models.

License

SIDE itself is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from CenterNet(anchor-free design), Stereo-RCNN(geometric constraint), DCNv2(deformable convolutions) and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Reference

If you find our work useful in your research, please consider citing our paper:

@article{peng2021side,
  title={SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation},
  author={Peng, Xidong and Zhu, Xinge and Wang, Tai and Ma, Yuexin},
  journal={arXiv preprint arXiv:2108.09663},
  year={2021}
}
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022