This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Overview

Graphormer

By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu.

This repo is the official implementation of "Do Transformers Really Perform Bad for Graph Representation?".

News

08/03/2021

  1. Codes and scripts are released.

06/16/2021

  1. Graphormer has won the 1st place of quantum prediction track of Open Graph Benchmark Large-Scale Challenge (KDD CUP 2021) [Competition Description] [Competition Result] [Technical Report] [Blog (English)] [Blog (Chinese)]

Introduction

Graphormer is initially described in arxiv, which is a standard Transformer architecture with several structural encodings, which could effectively encoding the structural information of a graph into the model.

Graphormer achieves strong performance on PCQM4M-LSC (0.1234 MAE on val), MolPCBA (31.39 AP(%) on test), MolHIV (80.51 AUC(%) on test) and ZINC (0.122 MAE on test), surpassing previous models by a large margin.

Main Results

PCQM4M-LSC

Method #params train MAE valid MAE
GCN 2.0M 0.1318 0.1691
GIN 3.8M 0.1203 0.1537
GCN-VN 4.9M 0.1225 0.1485
GIN-VN 6.7M 0.1150 0.1395
Graphormer-Small 12.5M 0.0778 0.1264
Graphormer 47.1M 0.0582 0.1234

OGBG-MolPCBA

Method #params test AP (%)
DeeperGCN-VN+FLAG 5.6M 28.42
DGN 6.7M 28.85
GINE-VN 6.1M 29.17
PHC-GNN 1.7M 29.47
GINE-APPNP 6.1M 29.79
Graphormer 119.5M 31.39

OGBG-MolHIV

Method #params test AP (%)
GCN-GraphNorm 526K 78.83
PNA 326K 79.05
PHC-GNN 111K 79.34
DeeperGCN-FLAG 532K 79.42
DGN 114K 79.70
Graphormer 47.0M 80.51

ZINC-500K

Method #params test MAE
GIN 509.5K 0.526
GraphSage 505.3K 0.398
GAT 531.3K 0.384
GCN 505.1K 0.367
GT 588.9K 0.226
GatedGCN-PE 505.0K 0.214
MPNN (sum) 480.8K 0.145
PNA 387.2K 0.142
SAN 508.6K 0.139
Graphormer-Slim 489.3K 0.122

Requirements and Installation

Setup with Conda

# create a new environment
conda create --name graphormer python=3.7
conda activate graphormer
# install requirements
pip install rdkit-pypi cython
pip install ogb==1.3.1 pytorch-lightning==1.3.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-geometric==1.6.3 ogb==1.3.1 pytorch-lightning==1.3.1 tqdm torch-sparse==0.6.9 torch-scatter==2.0.6 -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html

Citation

Please kindly cite this paper if you use the code:

@article{ying2021transformers,
  title={Do Transformers Really Perform Bad for Graph Representation?},
  author={Ying, Chengxuan and Cai, Tianle and Luo, Shengjie and Zheng, Shuxin and Ke, Guolin and He, Di and Shen, Yanming and Liu, Tie-Yan},
  journal={arXiv preprint arXiv:2106.05234},
  year={2021}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022