NPBG++: Accelerating Neural Point-Based Graphics

Related tags

Deep Learningnpbgpp
Overview

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics

Project Page | Paper

This repository contains the official Python implementation of the paper.

The repository also contains faithful implementation of NPBG.

We introduce the pipelines working with following datasets: ScanNet, NeRF-Synthetic, H3DS, DTU.

We follow the PyTorch3D convention for coordinate systems and cameras.

Changelog

  • [April 27, 2022] Added more example data and point clouds
  • [April 5, 2022] Initial code release

Dependencies

python -m venv ~/.venv/npbgplusplus
source ~/.venv/npbgplusplus/bin/activate
pip install -r requirements.txt

# install pytorch3d
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install "git+https://github.com/facebookresearch/[email protected]" --no-cache-dir --verbose

# install torch_scatter (2.0.8)
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.1+${CUDA}.html
# where ${CUDA} should be replaced by either cpu, cu101, cu102, or cu111 depending on your PyTorch installation.
# {CUDA} must match with torch.version.cuda (not with runtime or driver version)
# using 1.7.1 instead of 1.7.0 produces "incompatible cuda version" error

python setup.py build develop

Below you can see the examples on how to run the particular stages of different models on different datasets.

How to run NPBG++

Checkpoints and example data are available here.

Run training
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_scannet datasets=scannet_pretrain datasets.n_point=6e6 system=npbgpp_sphere system.visibility_scale=0.5 trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_nerf datasets=nerf_blender_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_h3ds datasets=h3ds_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_dtu datasets=dtu_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1  weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
Run testing
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_eval_scan118 datasets=dtu_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/DTU_masked datasets.scene_name=scan118 system=npbgpp_sphere system.visibility_scale=1.0 weights_path=./checkpoints/npbgpp_dtu_nm_mvs_ft_epoch35.ckpt eval_only=true dataloader=small
Run finetuning of coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_ft datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.train_num_samples=2000 datasets.train_image_size=null datasets.train_random_shift=false datasets.train_random_zoom=[0.5,2.0] datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors trainer.max_epochs=20 system.descriptors_pretrained_dir=experiments/npbgpp_eval_5ae021f2805c0854/descriptors weights_path=$\{hydra:runtime.cwd\}/checkpoints/npbgpp_h3ds.ckpt dataloader=small
Run testing with finetuned coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_test datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors system.descriptors_pretrained_dir=experiments/npbgpp_5ae021f2805c0854_ft/descriptors weights_path=experiments/npbgpp_5ae021f2805c0854_ft/checkpoints/last.ckpt dataloader=small eval_only=true

How to run NPBG

Run pretraining
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet datasets=scannet_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet/result/descriptors trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=11e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf datasets=nerf_blender_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_nerf/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds datasets=h3ds_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6  # Submitted batch job 1175175
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm datasets=dtu_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm/result/descriptors trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6
Run fine-tuning on 1 scene
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet_0045 datasets=scannet_one_scene datasets.scene_name=scene0045_00 datasets.n_point=6e6 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet_0045/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_scannet/result/checkpoints/epoch38.ckpt system.max_points=6e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf_hotdog datasets=nerf_blender_one_scene datasets.scene_name=hotdog datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=npbgplusplus/experiments/npbg_nerf_hotdog/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_nerf/result/checkpoints/epoch23.ckpt system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds_5ae021f2805c0854 datasets=h3ds_one_scene datasets.scene_name=5ae021f2805c0854 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds_5ae021f2805c0854/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_h3ds/result/checkpoints/epoch23.ckpt system.max_points=3e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm_scan110 datasets=dtu_one_scene datasets.scene_name=scan110 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm_scan110/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_dtu_nm/result/checkpoints/epoch35.ckpt system.max_points=3e6

Citation

If you find our work useful in your research, please consider citing:

@article{rakhimov2022npbg++,
  title={NPBG++: Accelerating Neural Point-Based Graphics},
  author={Rakhimov, Ruslan and Ardelean, Andrei-Timotei and Lempitsky, Victor and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2203.13318},
  year={2022}
}

License

See the LICENSE for more details.

Owner
Ruslan Rakhimov
Ruslan Rakhimov
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022