The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

Overview

Savior

save your time.

只在Ubuntu18.04下完成全部测试,其他平台暂时未测试。

目前项目还处于早期开发阶段,如有任何问题,欢迎添加微信nsnovio,备注部署,进群交流。

背景

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

workflow的已经做好的轮子很多,例如perfectpolyaxondagster等。 之所以开发一个新的,主要原因是那些框架都太heavy了,对于大部分用户来说没法直接白嫖。

这个项目的核心目的就是能够减少大家的重复性开发,能够把绝大部分能够直接白嫖的东西放在框架里面,然后大家专注于自己的业务属性上,提升大家的工作效率。

特性

  1. 弹性伸缩:用户可以根据目前的请求量,自定义配置机器数。方便项目上量,并且保证服务器资源吃满(支持K8S)。
  2. 流程DAG:用户通过自定义自己的流程,框架支持DAG,保证流程的最高的并行度。
  3. 容灾能力强:集群中所有节点都是相同作用,不会因为部分节点挂掉而服务崩溃。
  4. 可扩展性强:框架主要是实现了一种设计模式,开发者只需要按照当前设计模式,扩展性无上限。
  5. 部署便捷:部署到上线不会超过5分钟(不考虑网速)。

依赖的第三方组件

  • rabbitmq:用于celery进行分布式的任务分发

  • triton:用于gpu端的模型服务的集中部署

  • milvus:用于特征向量搜索,存储【推荐有搜索需求的用户自行配置】

    如果觉得milvus太大,用户可以根据自己的自身情况直接使用faiss或者nmslib。并且自己实现对应helper。

框架中已集成的算法

更多开源模型欢迎在issue中补充,也十分欢迎您的PR。

人脸相关

OCR相关

  • DB 文本检测
  • CRNN 文本识别
  • 版式分析
  • 文本图像方向矫正
  • 文本方向检测
  • 常见扇形环形转换为矩形(针对于segmentation base的检测方案)

图像搜索

通用

  • NRIQA

官方已适配模型下载地址(不定时更新):

根据自己的需要下载模型,不用全部下载。

简单使用教程

  1. 克隆项目git clone https://github.com/novioleo/Savior.git到本地。或者下载release下面的source包。
  2. 启动rabbitmq,推荐使用docker启动:docker run --restart=always -d --hostname celery-broker --name celery-broker -p5672:5672 -p15672:15672 -e RABBITMQ_DEFAULT_USER=guest -e RABBITMQ_DEFAULT_PASS=guest rabbitmq:3-management
  3. 启动triton,推荐使用docker(需要安装nvidia-docker)启动:docker run --gpus=all --name=triton-server -p8000:8000 -p8001:8001 -v/path/to/your/model/repo/path:/models nvcr.io/nvidia/tritonserver:20.12-py3 tritonserver --model-repository=/models,其中/path/to/your/model/repo/path是网盘中triton文件夹下载的所在文件夹。
  4. 修改项目配置,进入Savior文件夹中,进入Deployment包中,复制server_config.py.template并重命名为server_config.py,修改里面triton、rabbitmq的配置。
  5. 配置python与安装依赖,通过控制台进入Savior文件夹中,创建环境:conda create -n SaviorEnv python=3.8,激活环境source activate SaviorEnv,安装依赖:python -m pip install nvidia-pyindex==1.0.6 && python -m pip install -r requirements.txt
  6. 启动ConsumerWorker,通过控制台进入Savior文件夹中,启动worker:celery -A Deployment.ConsumerWorker worker --loglevel=INFO,如果一切配置正确会显示已经成功加载Task。
  7. 启动DispatchServer,通过控制台进入Savior文件夹中,启动server:python Deployment/DispathServer.py,启动成功会看到端口信息等。
  8. 测试接口服务,推荐使用apifox进行接口调用测试,可以通过post请求测试ocr_interface/general_ocr接口,传入参数image_url,发送请求(第一次运行需要等待,模型需要预热,五次之后基本上时间会稳定),会得到一个OSS的路径,如果OSS使用的是Dummy(默认),则找到/tmp/DummyOSS-temp-directory/{bucket_name}/{path}对应的文件。

生产级使用教程点我

接口结果预览

OCR相关

自然场景下OCR

如何在自有项目下开发?

移步至:DevelopTutorial

感谢

感谢各位开源项目大佬的无私奉献。

Owner
Tao Luo
Algorithmer.
Tao Luo
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022