This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

Related tags

Deep LearningERASOR
Overview

🌈 ERASOR (RA-L'21 with ICRA Option)

Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building", which is accepted by RA-L with ICRA'21 option [Demo Video].

overview

We provide all contents including

  • Source code of ERASOR
  • All outputs of the State-of-the-arts
  • Visualization
  • Calculation code of Preservation Rate/Rejection Rate

So enjoy our codes! :)

Contact: Hyungtae Lim ([email protected])

Advisor: Hyun Myung ([email protected])

Contents

  1. Test Env.
  2. Requirements
  3. How to Run ERASOR
  4. Calculate PR/RR
  5. Benchmark
  6. Run Your Own Code
  7. Visualization of All the State-of-the-arts
  8. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

  • Install ROS on a machine.
  • Also, jsk-visualization is required to visualize Scan Ratio Test (SRT) status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins

Buildg Our Package

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/ERASOR.Official.git
cd .. && catkin build erasor 

Python Setting

  • Our metric calculation for PR/RR code is implemented by python2.7
  • To run the python code, following pakages are necessary: pypcd, tqdm, scikit-learn, and tabulate
pip install pypcd
pip install tqdm	
pip install scikit-learn
pip install tabulate

Prepared dataset

  • Download the preprocessed KITTI data encoded into rosbag.
  • The downloading process might take five minutes or so. All rosbags requires total 2.3G of storage space
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/00_4390_to_4530_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/01_150_to_250_w_interval_1_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/02_860_to_950_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/05_2350_to_2670_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/07_630_to_820_w_interval_2_node.bag

Description of Preprocessed Rosbag Files

  • Please note that the rosbag consists of node. Refer to msg/node.msg.
  • Note that each label of the point is assigned in intensity for the sake of convenience.
  • And we set the following classes are dynamic classes:
# 252: "moving-car"
# 253: "moving-bicyclist"
# 254: "moving-person"
# 255: "moving-motorcyclist"
# 256: "moving-on-rails"
# 257: "moving-bus"
# 258: "moving-truck"
# 259: "moving-other-vehicle"
  • Please refer to std::vector DYNAMIC_CLASSES in our code :).

How to Run ERASOR

We will explain how to run our code on seq 05 of the KITTI dataset as an example.

Step 1. Build naive map

kittimapgen

  • Set the following parameters in launch/mapgen.launch.
    • target_rosbag: The name of target rosbag, e.g. 05_2350_to_2670_w_interval_2_node.bag
    • save_path: The path where the naively accumulated map is saved.
  • Launch mapgen.launch and play corresponding rosbag on the other bash as follows:
roscore # (Optional)
roslaunch erasor mapgen.launch
rosbag play 05_2350_to_2670_w_interval_2_node.bag
  • Then, dense map and voxelized map are auto-saved at the save path. Note that the dense map is used to fill corresponding labels (HERE). The voxelized map will be an input of step 2 as a naively accumulated map.

Step 2. Run ERASOR erasor

  • Set the following parameters in config/seq_05.yaml.

    • initial_map_path: The path of naively accumulated map
    • save_path: The path where the filtered static map is saved.
  • Run the following command for each bash.

roscore # (Optional)
roslaunch erasor run_erasor.launch target_seq:="05"
rosbag play 05_2350_to_2672_w_interval_2_node.bag
  • IMPORTANT: After finishing running ERASOR, run the following command to save the static map as a pcd file on another bash.
  • "0.2" denotes voxelization size.
rostopic pub /saveflag std_msgs/Float32 "data: 0.2"
  • Then, you can see the printed command as follows:

fig_command

  • The results will be saved under the save_path folder, i.e. $save_path$/05_result.pcd.

Calculate PR/RR

You can check our results directly.

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip

Then, run the analysis code as follows:

python analysis.py --gt $GT_PCD_PATH$ --est $EST_PCD_PATH$

E.g,

python analysis.py --gt /home/shapelim/erasor_paper_pcds/gt/05_voxel_0_2.pcd --est /home/shapelim/erasor_paper_pcds/estimate/05_ERASOR.pcd

NOTE: For estimating PR/RR, more dense pcd file, which is generated in the mapgen.launch procedure, is better to estimate PR/RR precisely.

Benchmark

  • Error metrics are a little bit different from those in the paper:

    Seq. PR [%] RR [%]
    00 91.72 97.00
    01 91.93 94.63
    02 81.08 99.11
    05 86.98 97.88
    07 92.00 98.33
  • But we provide all pcd files! Don't worry. See Visualization of All the State-of-the-arts Section.

Run Your Own Code

⚠️ TBU: The code is already in this repository, yet the explanation is incomplete.

Visualization of All the State-of-the-arts

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip
  • Set parameters in config/viz_params.yaml correctly

    • abs_dir: The absolute directory of pcd directory
    • seq: Target sequence (00, 01, 02, 05, or 07)
  • After setting the parameters, launch following command:

roslaunch erasor compare_results.launch

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021erasor,
title={ERASOR: Egocentric Ratio of Pseudo Occupancy-Based Dynamic Object Removal for Static 3D Point Cloud Map Building},
author={Lim, Hyungtae and Hwang, Sungwon and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
volume={6},
number={2},
pages={2272--2279},
year={2021},
publisher={IEEE}
}
Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022