This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

Related tags

Deep LearningERASOR
Overview

🌈 ERASOR (RA-L'21 with ICRA Option)

Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building", which is accepted by RA-L with ICRA'21 option [Demo Video].

overview

We provide all contents including

  • Source code of ERASOR
  • All outputs of the State-of-the-arts
  • Visualization
  • Calculation code of Preservation Rate/Rejection Rate

So enjoy our codes! :)

Contact: Hyungtae Lim ([email protected])

Advisor: Hyun Myung ([email protected])

Contents

  1. Test Env.
  2. Requirements
  3. How to Run ERASOR
  4. Calculate PR/RR
  5. Benchmark
  6. Run Your Own Code
  7. Visualization of All the State-of-the-arts
  8. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

  • Install ROS on a machine.
  • Also, jsk-visualization is required to visualize Scan Ratio Test (SRT) status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins

Buildg Our Package

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/ERASOR.Official.git
cd .. && catkin build erasor 

Python Setting

  • Our metric calculation for PR/RR code is implemented by python2.7
  • To run the python code, following pakages are necessary: pypcd, tqdm, scikit-learn, and tabulate
pip install pypcd
pip install tqdm	
pip install scikit-learn
pip install tabulate

Prepared dataset

  • Download the preprocessed KITTI data encoded into rosbag.
  • The downloading process might take five minutes or so. All rosbags requires total 2.3G of storage space
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/00_4390_to_4530_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/01_150_to_250_w_interval_1_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/02_860_to_950_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/05_2350_to_2670_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/07_630_to_820_w_interval_2_node.bag

Description of Preprocessed Rosbag Files

  • Please note that the rosbag consists of node. Refer to msg/node.msg.
  • Note that each label of the point is assigned in intensity for the sake of convenience.
  • And we set the following classes are dynamic classes:
# 252: "moving-car"
# 253: "moving-bicyclist"
# 254: "moving-person"
# 255: "moving-motorcyclist"
# 256: "moving-on-rails"
# 257: "moving-bus"
# 258: "moving-truck"
# 259: "moving-other-vehicle"
  • Please refer to std::vector DYNAMIC_CLASSES in our code :).

How to Run ERASOR

We will explain how to run our code on seq 05 of the KITTI dataset as an example.

Step 1. Build naive map

kittimapgen

  • Set the following parameters in launch/mapgen.launch.
    • target_rosbag: The name of target rosbag, e.g. 05_2350_to_2670_w_interval_2_node.bag
    • save_path: The path where the naively accumulated map is saved.
  • Launch mapgen.launch and play corresponding rosbag on the other bash as follows:
roscore # (Optional)
roslaunch erasor mapgen.launch
rosbag play 05_2350_to_2670_w_interval_2_node.bag
  • Then, dense map and voxelized map are auto-saved at the save path. Note that the dense map is used to fill corresponding labels (HERE). The voxelized map will be an input of step 2 as a naively accumulated map.

Step 2. Run ERASOR erasor

  • Set the following parameters in config/seq_05.yaml.

    • initial_map_path: The path of naively accumulated map
    • save_path: The path where the filtered static map is saved.
  • Run the following command for each bash.

roscore # (Optional)
roslaunch erasor run_erasor.launch target_seq:="05"
rosbag play 05_2350_to_2672_w_interval_2_node.bag
  • IMPORTANT: After finishing running ERASOR, run the following command to save the static map as a pcd file on another bash.
  • "0.2" denotes voxelization size.
rostopic pub /saveflag std_msgs/Float32 "data: 0.2"
  • Then, you can see the printed command as follows:

fig_command

  • The results will be saved under the save_path folder, i.e. $save_path$/05_result.pcd.

Calculate PR/RR

You can check our results directly.

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip

Then, run the analysis code as follows:

python analysis.py --gt $GT_PCD_PATH$ --est $EST_PCD_PATH$

E.g,

python analysis.py --gt /home/shapelim/erasor_paper_pcds/gt/05_voxel_0_2.pcd --est /home/shapelim/erasor_paper_pcds/estimate/05_ERASOR.pcd

NOTE: For estimating PR/RR, more dense pcd file, which is generated in the mapgen.launch procedure, is better to estimate PR/RR precisely.

Benchmark

  • Error metrics are a little bit different from those in the paper:

    Seq. PR [%] RR [%]
    00 91.72 97.00
    01 91.93 94.63
    02 81.08 99.11
    05 86.98 97.88
    07 92.00 98.33
  • But we provide all pcd files! Don't worry. See Visualization of All the State-of-the-arts Section.

Run Your Own Code

⚠️ TBU: The code is already in this repository, yet the explanation is incomplete.

Visualization of All the State-of-the-arts

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip
  • Set parameters in config/viz_params.yaml correctly

    • abs_dir: The absolute directory of pcd directory
    • seq: Target sequence (00, 01, 02, 05, or 07)
  • After setting the parameters, launch following command:

roslaunch erasor compare_results.launch

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021erasor,
title={ERASOR: Egocentric Ratio of Pseudo Occupancy-Based Dynamic Object Removal for Static 3D Point Cloud Map Building},
author={Lim, Hyungtae and Hwang, Sungwon and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
volume={6},
number={2},
pages={2272--2279},
year={2021},
publisher={IEEE}
}
Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022